Date of Award

Spring 5-8-2023

Degree Type

Dissertation

Degree Name

PhD Molecular Bioscience

Department

Biology

Advisor

Sulie L. Chang, PhD

Committee Member

Marylynn Snyder, PhD

Committee Member

C.J. Urso, PhD

Committee Member

Gregory Wiedman, PhD

Committee Member

Heping Zhou, PhD

Keywords

ethanol, transient receptor potential melastatin 7, blood–brain barrier, brain microvascular endothelial cells; HIV-1; HIV-1 transgenic rat

Abstract

Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 was expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood–brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs was lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.

Available for download on Friday, May 16, 2025

Included in

Biology Commons

Share

COinS