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Abstract 

The emerging field of RNA nanotechnology has led to rapid advances in the applications 

of RNA in chemical biology, medicinal chemistry, and biotechnology. At the forefront of its 

utility is the ability to self-assemble multiple siRNAs into nanostructure formulations capable of 

targeting selected oncogenes and potentiating the gene therapy of malignant tumors. Self-

assembled siRNA integrates multiple siRNAs within a single molecular platform for silencing 

multiple oncogenic mRNA targets with high precision and efficacy to potentially induce cancer 

cell apoptosis through the RNA interference (RNAi) pathway. Furthermore, the conjugation of 

siRNA self-assemblies with bio-active probes results in multi-functional theranostic 

(therapy+diagnostic) agents capable of enhancing cancer cell detection and treatment. This 

includes the introduction of lipids for cell uptake, fluorophores for cell-based detection, and 

metallic nanoparticle formulations for optimizing siRNA biophysical and biological properties. 

The latter is a central focus of my thesis research objectives, aimed towards the development of 

self-assembled siRNA bioconjugates as effective anti-cancer agents.  

Glucose-regulated proteins (GRPs) are a class of chaperone proteins of the endoplasmic 

reticulum that serve as key sensors for misfolded proteins and trigger the unfolded protein 

response (UPR) under physiological and pathological stress conditions. Moreover, GRPs have 

been classified as clinically relevant biological markers in cancer detection and treatment and 

found to be over-expressed and cell surface localized in a wide range of cancer types. In cancer, 

the GRPs regulate cancer initiation, proliferation, adhesion, and invasion which contributes to 

metastatic spread and treatment resistance. Over the last decade, our research program has 

focused on the development of various high-order, self-assembled, multi-functional siRNAs 
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capable of silencing the oncogenic GRPs, and reversing their protective UPR effects related to 

proliferative, pro-survival, and anti-apoptotic pathways in selected tumors. Chemical tools have 

been implemented to improve the poor pharmacological properties of siRNAs to maximize their 

full therapeutic efficacy against tumorigenic disease conditions, which are highlighted in Chapter 

1 of this thesis.  

Chapter 2 highlights the development of synthetic strategies to improve siRNA metabolic 

stability, cellular uptake, and delivery, which are still in widespread demand for effective siRNA 

therapeutic applications. More specifically, this research aims to incorporate a small set of fatty 

acids into chemically derived siRNAs to improve their metabolic stability and cancer cell 

permeability. To achieve this goal, we have generated the higher-order siRNAs based on self-

assembled branching structures. The self-assembled branch siRNAs were generated from their 

corresponding RNA template strands, which incorporated a synthetic ribouridine branchpoint 

synthon. This monomer was developed by an efficient solution-phase synthesis route and can be 

effectively incorporated within linear, V, and Y-shaped RNA templates by automated solid-

phase RNA synthesis. Furthermore, an optimized coupling procedure has been developed for 

tagging variable saturated and unsaturated fatty acids onto linear, V- and Y-shape RNA 

templates. The RNA-fatty acid bioconjugates were analyzed, purified, and characterized by 

LC/MS. They were then hybridized with complementary RNA single strands to afford the 

amphiphilic self-assembled branch siRNA bioconjugates. The amphiphilic siRNA bioconjugates 

were detected by native PAGE, CD spectroscopy, and RP IP HPLC, while characterization of 

their self-assembled nanostructures was determined by DLS and TEM. Furthermore, the self-

transfection capabilities of the siRNA-fatty acid bioconjugates and their biological activities 

within a model prostate cancer (PC-3) cell line revealed partial cell uptake, which contributed to 
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modest RNAi activity when compared to the siRNA controls transfected with a commercially 

available transfection reagent. Nonetheless, this reported solid-phase RNA bioconjugation 

approach provides an important entry point for the incorporation of various hydrophobic and 

amphiphilic functional groups. This strategy may enable further development of new generation 

RNAi molecules for screening important oncogene targets and for improving cancer gene 

therapy applications.  

Chapter 3 describes the synthesis, characterization, and biological evaluation of a new 

class of bifunctional gold (Au)-RNA nanoparticles to improve cellular uptake and theranostic 

utility of the multi-functional siRNA nanostructures in prostate cancer cells. In this study, we 

have developed a simple, bottom-up approach using alkylamino modified RNAs to produce 

stable and small Au-RNA nanoparticle formulations bearing either a fluorescent reporter 

(fluorescein) or a fatty acid group (palmitamide) to track cell uptake in PC-3 prostate cancer 

cells. The resulting Au-functionalized RNA particles were found to be stable under reducing 

conditions according to UV-Vis spectroscopy. Sample characterization by DLS and TEM 

confirmed self-assembly into primarily small (~10-40 nm) spherical shaped nanoparticles 

anticipated to be applicable to cell biology. The application of Au-functionalized siRNA 

particles in prostate cancer (PC-3) cells resulted in the knockdown of GRP75, which led to 

detectable levels of cell death in the absence of a transfection vector. Consequently, this novel 

Au-RNA theranostic formulation may prove to be a valuable bifunctional probe in the early 

detection and treatment of prostate cancer and related solid tumors.  

Chapter 4 of this thesis summarizes our on-going and future work aimed at incorporating 

cell-targeting ligands within the Au-siRNA nanoparticle formulations for specific cancer 
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treatment in cell cultures and within tumor-bearing mice models. The study aims to modify the 

Au-siRNA nanoparticle formulation with cell-targeting peptides (CTPs), which functions to 

target and bind to a cell surface receptor, in this case, PSMA, found on the surface of select 

prostate cancer cells. A PSMA-targeting peptide sequence has been selected for targeted delivery 

of the Au-siRNA formulation directly within PSMA+ prostate cancer cells for the application of 

cancer-targeting gene therapy. Taken together, this thesis will serve to highlight the synthetic 

strategies towards the development of higher-order self-assembled siRNA bioconjugates with 

self-transfection capabilities for silencing multiple oncogenic GRPs in cancer. 

 
KEYWORDS: siRNA, Glucose Regulated Proteins (GRPs), Prostate Cancer, siRNA 
nanostructures, siRNA bioconjugates (Fatty acids, Gold Nanoparticles, Florescent Probes). 
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Chapter 1: Theranostics Applications of siRNA and their Bioconjugates in 
RNAi Based Gene Therapy 
 
1.1 Discovery of the RNAi Mechanism  

The RNA interference (RNAi) mechanism of mRNA suppression remained enigmatic until 

the pioneering work of Victor Ambros’ group,1 and by American scientists Andrew Fire and 

Craig Mello.2 Their seminal work on the regulation of gene expression with the model 

organism Caenorhabditis elegans (C. elegans) led to the discovery of small, non-coding RNAs 

that interfered with gene expression at the mRNA level, leading to suppression of protein 

synthesis. Their efforts demonstrated that a simultaneous injection of sense and antisense double-

stranded RNA (dsRNA) targeting the mRNA transcript of the unc-22 gene exhibited very 

specific and operative inhibition of the uncoordinated (unc-22 & unc-54) genes. Inhibition of 

gene expression for the myofilament protein in C. elegans led to articulated twitching which 

suggested a direct correlation between gene suppression and functional responses within the 

organism. The proposed mechanism for gene suppression revealed the importance of the 

antisense RNA strand in targeting and suppressing mRNA expression resulting in the disruption 

of protein production and observable changes in phenotype characteristics. Subsequent to their 

findings, Guo and Kemphues3 worked on the inhibition of the par-1 gene in C. elegans, a major 

protein involved in the embryonic development of worms. This work led to the discovery of the 

effects of the sense RNA strand, which seemed to function by a separate mechanism compared to 

the antisense RNA strand and was found to be rather restricted as a putative passenger strand for 

a targeted mRNA region. Their mechanistic studies with nematodes revealed that upon treatment 

with sense and antisense dsRNA targeting the unc-22 gene, nematodes became strong twitchers. 

This functional response was absent when the organism was treated with either sense or 
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antisense single-stranded RNA (ssRNA), underscoring the critical importance of dsRNA-

mediated suppression of gene expression. The fundamental mechanism of RNAi was later 

confirmed by Fire and Mello.4 Based on their previous work on the suppression of unc-22 and 

unc-54 genes in C. elegans, complementary dsRNA sequences produced a more compelling loss 

in motor function when compared to the antisense or sense RNA sequences applied 

independently, even at lower dsRNA doses.4 Fire and Mellow were subsequently awarded the 

Nobel Prize in Physiology or Medicine in 2006 for their discovery of the RNAi pathway.5  

 
1.2 siRNA Structure and Function in RNAi Pathway 

Small interfering RNA (siRNA) is a class of non-coding RNAs composed of a 

complementary sense and antisense dsRNA containing 18-25 base-pairs.6-8 The dsRNA is 

composed of a well-defined structure consisting of a phosphorylated 5’-end and a hydroxylated 

3’-end typically containing a two nucleotide (nt) overhang. This small dsRNA also consists of an 

active guide (antisense) strand and an inactive passenger (sense) RNA strand. Considerable 

progress has been made to optimize the requisite parameters for stable dsRNA formation while 

designing siRNAs with enhanced RNAi potency. This includes optimization of thermodynamic 

properties by the implementation of algorithms used to create thermodynamically stable 

symmetric and asymmetric siRNAs. Computational analysis has been used to select the sequence 

compositions for the sense and antisense RNA strands that confers a stable A-type helix dsRNA 

secondary structure and binding specificity to targeted mRNA. Furthermore, siRNA 

modifications have been developed for enhancing RNAi activity while minimizing off-target 

silencing effects, and immunostimulatory activities that are known to cause toxicity. These 

modifications have also served to improve siRNA stability in biological media while enhancing 

cell uptake for RNAi activity in vitro and in vivo. Figure 1.1 shows the representative sequence 
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and secondary structure motifs that may be implemented or modified for improved RNAi 

potency. A comprehensive study on a combinatorial library of chemically synthesized siRNA,9 

revealed four sets of rules based on optimizing the siRNA base composition of the sense strand. 

These include Rule 1: presence of A/U at position 19, GC at the first position, A/U at position 

10, 43 A/Us at position 13–19; Rule 2: presence of A/U at position 19, GC at the first position, 

GC at position 10, 43 A/Us at position 13–19; Rule 3: presence of G/C at position 19, GC at 

position 1, GC at position 11, 46 A/Us at position 5–19; and Rule 4: presence of A/U at position 

19, A/U at position 1, 43 A/Us at position 13–19. Taken together, these rules provide a general 

understanding of designing siRNAs of desired structure and sequence compositions for the 

advancement of more efficient siRNAs in RNAi applications.   
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Figure 1.1. Representative characteristics of siRNA sequence and structure compositions; green 
bases are in favorable positions, whereas bases in red should be avoided. Ago, Argonaute; CDS, 
coding sequence. Figure reproduced with permission from: Fakhr, E.; Zare, F.; Teimoori-
Toolabi, L. Cancer Gene Ther. 2016, 23, 73–82.7 
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The RNAi pathway that occurs in plants, animals, and humans is a natural biological defense 

mechanism used for the inactivation of exogenous genes and theoretically can be applied to 

silence any disease-related genes in a sequence-specific manner.10 Thus RNAi modalities, 

siRNA, and microRNA (miRNA) provide therapeutic potential, by the knockdown of malignant 

gene expression in a sequence-specific manner by targeted mRNA translation inhibition and 

degradation (Figure 1.2).10-12 In this pathway, the active components of the RNAi machinery are 

identified and assembled to initiate the first step of the RNAi pathway. This involves the 

processing of long non-coding dsRNA or short hairpin RNA (shRNA) by binding to the 

cytoplasmic enzyme Dicer, a member of the RNase III family which subsequently cleaves the 

dsRNA into smaller siRNA fragments, typically 21-23 nucleotides in length.13 The siRNA is 

then recruited and bound onto the RNA-activated silencing complex (RISC) complex, which 

separates the antisense and sense RNA strands. The sense RNA strand dissociates from the RISC 

complex and eventually undergoes cleavage and degradation by endogenous nucleases, while the 

antisense RNA strand bound within RISC will target and bind to the corresponding mRNA 

sequence.14 The mRNA sequence undergoes inhibition of protein translation and degradation by 

the catalytic action of the Argonaute II ribonuclease subunit embedded within the active site of 

the RISC complex.15 In this manner, the RNAi mechanism is used ubiquitously for the regulation 

of gene expression in prokaryotes and mammalian cell types as well as in a wide range of 

organisms resulting in important adaptive and functional changes. It is also important in the 

defense against various invading pathogens or the elimination of gene expression within 

malignant cells. The latter holds therapeutic implications, as the design and development of 

siRNAs targeting malignant mRNA have been applied in the prevention and treatment of a broad 
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range of human diseases.16 Thus, the RNAi pathway opens exciting possibilities for use in gene 

silencing technologies.  

 

 

 

 
 

Figure 1.2. Schematic illustrations of the working mechanisms of miRNA (A) and siRNA (B). 
Figure reproduced with permission from: Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; 
Zhao, Y.; Liang, X.J. Signal Transduct. Targeted Ther. 2020, 5, 101.12 
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1.3. Therapeutic siRNAs 

This RNAi method has already become an important research tool in biology and 

biomedicine. Significantly, after a long journey from its discovery, two clinical approvals of 

siRNA therapeutics, ONPATTRO® (Patisiran) and GIVLAARI™ (Givosiran) have been recently 

achieved by Alnylam Pharmaceuticals. These siRNA-based therapeutics are respectively used 

for the treatment of polyneuropathy in adults with hereditary transthyretin-mediated amyloidosis; 

or for treatment of acute hepatic porphyria, a genetic disorder resulting in the buildup of toxic 

porphyrin molecules which are formed during the production of heme.12 Furthermore, additional 

RNAi-based treatments are currently in the clinical pipeline for various diseases such as cancer, 

Huntington’s disease, chronic liver diseases, eye diseases such as glaucoma, and retinopathy in 

diabetes.17,18 

 
Among the other clinical siRNA candidates, QPI-1002 (I5NP) and QPI-1007 have been 

developed by Quark Pharmaceuticals targeting the p53 tumor suppressor for respectively treating 

acute kidney injury (phase 2 trials) and delayed graft function (phase 3 trials).19,20 Due to their 

biochemical nature, the QP-1002 siRNAs accumulated in the kidney at concentrations >40 times 

compared to other tissues and organs; and resulted in p53 mRNA eradication in proximal tubule 

cells at a concentration of ~1 nM. Furthermore, bilateral renal-clamp studies confirmed the 

preservation of kidney function following siRNA treatment. These therapeutic effects were also 

observed in siRNA-treated animals which showed ischemia with decreased serum creatinine 

levels from 3.7 mg/dL to 1.9 mg/dL with little toxicity observed at standard dosages. 

Comparatively, the QPI-1007 siRNAs targeted the pro-apoptotic mediator caspase-2, to treat 

acute primary angle-closure glaucoma (phase 2 trials) and non-arthritic anterior ischemic optic 

neuropathy (NAION, phase 3 trials).23 Preclinical investigations validated potent caspase-2 gene 
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silencing in HeLa cells and reversed optic nerve damage in injured animal models without any 

serious side-effects.21 It was concluded that QPI-1007 significantly protected the optic nerve in 

pre-clinical and clinical trials, underscoring the therapeutic efficacy of siRNA treatment.22  

A clinical siRNA candidate, ALN-RSV01 (Asvasiran sodium), has also been developed to 

thwart the progression of infectious diseases. This unmodified siRNA targets the respiratory 

syncytial virus (RSV) nucleocapsid (N) gene which consequently inhibits viral replication.24 

Clinical data validated its beneficial effects on long-term allograft function in lung transplant 

patients infected with RSV,25-27 while another report showed that ALN-RSV01 aids in the 

prevention of bronchiolitis obliterans syndrome following lung syncytial virus infection in lung 

transplant patients.28 Similarly, other beneficial siRNAs have also been made to target various 

receptors such as polo-like kinase 1 (PLK1),29 kinesin spindle protein (KSP),30 and 

ribonucleotide reductase M2 subunit (RRM2);31 which play important roles in cell cycle 

progression; KRAS(G12D)32 implicated in cell signaling; protein kinase N3 (PKN3)33,34, 

tenascin C35, and for cell proliferation and angiogenesis vascular endothelial growth factor 

(VEGF)36,37 is involved. Thus, therapeutic siRNAs have been used to target a wide range of 

biological markers implicated in a variety of disease states ranging from infectious to metabolic 

and genetic disorders.   

1.4. Limitations of therapeutic siRNAs and remedial strategies  

However, the development of RNAi-based therapeutics is not without challenges.38,39 

Namely, the small RNA molecule may be effectively cleared via the renal system thereby 

restricting its therapeutic index. Native siRNAs are also widely susceptible to nuclease digestion, 

limiting their therapeutic efficacy in biological media. Furthermore, siRNAs can exert a toxic 
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immunological response by binding and activating certain receptors of the innate immune 

system. For example, Toll-Like Receptors (2), have been activated by siRNAs, igniting a 

cytokine/chemokine storm which may have detrimental side-effects and widespread toxicity. 

Among their most significant limitations, siRNAs are negatively charged and lack cell 

permeability. Delivery of native siRNAs into cells has been a paramount challenge, generally 

resulting in poor transfection efficiency and ineffective gene therapy. To overcome this 

challenge, several methods have been implemented―electroporation, calcium phosphate 

transfection, and microinjection for effective siRNA delivery into target cells.40 However, these 

methods are complex and tedious. Moreover, they are not suitable for long-term gene silencing 

effects and in vivo applications.   

To overcome these challenges, a thorough evaluation of the sequence and structure 

compositions, biological potency, and toxicity parameters that may be optimized is critical for 

enhanced siRNA biological performance. Chemical modifications, self-assembly, and delivery 

formulations of siRNA have been developed to fulfill the functional requirements of siRNA 

activity while minimizing toxicity. Advancements in nucleic acid chemistry, bioconjugation 

approaches, programable and non-programmable self-assembly strategies related to RNA 

nanotechnology, delivery strategies with viral and non-viral vectors, and functionalized 

nanocarriers have all been applied for optimizing the efficiency of siRNA activity in target cells. 

The application of lipids, polymers, nucleic acids, proteins, and organic/inorganic materials have 

improved the biomedical applications of siRNAs in imaging,41,42 sensing,43 targeted drug 

delivery,44 electronics, and nanomedicines.45 Thus, siRNAs may be readily modified or 

combined with complementary components that may serve to improve their functional utility. 
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1.5. Chemically modified siRNAs 

Chemically modified siRNAs (cm-siRNAs) have also been developed to improve the 

biophysical and biological properties of the native siRNAs. Typically, the most popular 

strategies include chemical modifications of the ribose sugar, modification of the phosphodiester 

backbone, and nucleobase changes which impacts hybrid stability (Figure 1.3).12,46 The ribose 

sugar chemical modifications include the substitution of the 2’-hydroxyl (2’-OH) group with 2’-

fluorine- (2’-F), 2’-O-methyl- (2’-O-Me), and 2’-amino- (2’-NH2) substitutions which are 

isosteric and isoelectronic compared to native RNA allowing for dsRNA hybrid formation. 

Bulkier modifications, including 2’-O-methoxyethyl (2’-O-MOE), have more significantly 

impacted RNA folding. Similarly, 2’-methylene bridged locked nucleic acids (LNA) and 

unlocked nucleic acids (UNA), have served to increase RNA chemical and thermal stability 

while maintaining RNAi activity relative to control siRNA.12,46-50 Furthermore, modification of 

the phosphodiester linkage has served to increase siRNA serum stability. The site-selective 

incorporation and/or replacement of the phosphodiester backbone with a phosphorothioate 

(substitution of the non-bridging oxygen for a sulfur atom);51 boranophosphate (substitution of 

the non-bridging oxygen for a borane)52 or an amide linkage (peptide nucleic acids, PNA).53 The 

latter modification replaces the negatively charged phosphate with the neutrally charged amide 

bond, which evades nuclease and protease digestion, thereby increasing the chemical stability 

and gene silencing activity of cm-siRNAs.54 Interestingly, these modifications have also 

minimized off-target gene silencing effects which have resulted in diminished toxicity. The 

single incorporation of 2’-O-Me and LNA within cm-siRNAs has been shown to improve the 

stability and specificity of the siRNA target gene silencing activity.55 Modifications to the 

nucleobases have been explored and resulted in significant changes in base-pairing affinity.56 
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Some of these modifications include 5-bromouracil and 5-iodouracil as uracil derivatives, 

diamino purine as an adenine analog, 2-thiouracil, 4-thiouracil, pseudo-uracil, 5-methylation of 

pyrimidines, nonaromatic bases, and dihydrouracil. In most cases, the chemical RNA stability is 

significantly enhanced, however, the base-pairing function can be altered depending on the 

location of the modified bases within the sequence. Therefore, nucleobase modifications are less 

common in cm-siRNA therapeutic applications, although they have contributed to the basic 

understanding of the molecular requirements for siRNA hybrid formation and thermodynamic 

stability.57 Taken together, chemical modifications have served to improve the stability, and 

biological activity of siRNAs while minimizing toxicity associated with off-target gene silencing 

or immunostimulatory activities. Thus, cm-siRNAs are preferred analogs that have served to 

improve the therapeutic efficacy of siRNA drug candidates.  
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Figure 1.3. Structures of cm-siRNA. These structures can be divided into three classes: 
phosphodiester backbone, a ribose sugar, and nucleobase modifications, which are marked in red, 
purple, and blue, respectively. R = H or OH, for RNA or DNA, respectively. (S)-cEt-BNA (S)-
constrained ethyl bicyclic nucleic acid, PMO phosphorodiamidate morpholino oligomer. Figure 
reproduced with permission from: Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; 
Liang, X.J. Signal Transduct. Targeted Ther. 2020, 5, 101.12 
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1.6. siRNA Bioconjugation  

Structural and chemical modifications that facilitate the incorporation of functional 

chemical ligands, such as fluorescent dyes, lipids, chemotherapeutic drugs, or biotin, within 

RNA by well-established chemical conjugation strategies have served to improve the utility of 

siRNA bioconjugates (Figure 1.4).58 For example, siRNA bioconjugates have been synthesized 

by Click chemistry, using the copper-catalyzed azide-alkyne cycloaddition (CuAAC).59 This 

conjugation approach produced a series of lipidated siRNA derivatives functionalized with long-

chain alkyl, cholesterol, oligoamine, and carbohydrate groups. The siRNA bioconjugates resulted 

in luciferase knockdown within HeLa cells, thereby validating their potential utility in cancer 

gene therapy applications. A cancer-targeting approach was realized with folic acid PEG-

conjugated siRNAs, prepared by the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction. The 

functionalized siRNA displayed selective cell line permeability, in Neuro2A cells overexpressing 

the folate receptor on the cell surface. Cell uptake triggered silencing of the reporter Green 

Fluorescent Protein (GFP) thereby validating its applicability in receptor-guided gene 

silencing.60 It has been shown that targeting ligands may enable binding affinity and cellular 

uptake via receptor-mediated endocytosis leading to improved RNAi efficacy of the siRNA 

bioconjugates relative to their native counterparts. For example, the anisamide conjugated 

siRNA combined with a hepta-guanidino -cyclodextrin-PEG (G-CD-PEG) copolymer produced 

a multifunctional formulation which was found to stabilize the nanoparticles in physiological 

media and extended their circulation time in vitro. These desirable pharmacokinetic effects 

enabled selective binding affinity and effective cell uptake via the targeted s-receptor on the 

surface of PC-3 human prostate cancer cells, resulting in silencing of the reporter luciferase 

gene.61 Conjugation of N-acetylgalactosamine (GalNAc) to siRNA via phosphoramidite 
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chemistry has significantly improved delivery to hepatocytes in vitro and in vivo by binding to 

the asialoglycoprotein receptor (ASGPR), followed by receptor-mediated cellular 

internalization.62,63 It has been shown that multivalent GalNAc clusters conjugated to siRNAs 

resulted in potent RNAi-mediated gene knockdown in hepatocytes at therapeutically relevant 

doses in mice validating their potential to treat liver-associated genetic disorders. Cell-targeting 

peptides (CTPs) have also been used as homing agents for specific cellular and tissue delivery of 

siRNA bioconjugates. In a selected application, cRGD peptides targeting the integrin receptors 

were conjugated to siRNA following Michael addition chemistry of the thiolate functionalized 

siRNA with the maleimide containing cRGD peptides.64 The cRGD-siRNAs targeting the 

luciferase reporter gene in αvβ3 positive M21+ human melanoma cells produced progressive, 

dose-dependent knockdown, illustrating the synergistic effects of the multi-valent cRGD 

presentation of the cRGD-siRNA bioconjugates.65 Selective conjugation approaches have also 

been developed in between monoclonal antibodies (mAbs) and siRNAs to improve therapeutic 

efficacy. For example, the Human Epidermal Growth Factor Receptor 2 monoclonal antibody 

(anti-HER2 mAb) bearing an aminooxy-functionalized cationic block copolymer facilitated 

condensation of GAPDH-silencing siRNA for delivery within HER2+ tumors.66 Following 

treatment, GAPDH levels were significantly reduced underscoring the therapeutic potential of 

targeted gene delivery approaches. Of relevance to the complementary work reported in this 

thesis, gold (Au) nanoparticles have been used to track siRNA activity in cells. Bioconjugation 

of poly-lysine to Au-nanoparticles enabled condensation and controlled release of siRNA 

silencing the GFP reporter in H1299 cells following exposure to near-infrared light.67 Thus, 

multi-functional nanoparticle formulations may be effectively used in siRNA-based gene 

therapy.  
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Figure 1.4. Representative examples of siRNA-based bioconjugates. Figure adapted with 
permission from: Patel PL, Rana NK, Patel MR, Kozuch SD, Sabatino D. ChemMedChem. 2016, 
1(3), 252-269.58  
 
 

1.7. Self-Assembled siRNA Nanotechnology 

Advances in RNA structural biology have improved our understanding of the structures 

and folding properties of naturally occurring self-assembled RNAs.68 The architectural potential 

of RNA relies on the ability of a single RNA strand to fold into thermodynamically stable three-

dimensional structures. The incorporation of functional and structural RNA elements has been 

used to template the construction of high-order RNA structures. The presence of secondary 

structure RNA motifs― bends, stacks, junctions, loops, and chelates with divalent metal cations 

(Mg2+, Ca2+, Mn2+, Co2+, Pb2+) or high concentrations of monovalent metal cations (Na+) in 
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buffered pH have improved RNA structural stability and functional utility.69 Several types of 

functional RNA or RNA elements have been applied in RNA self-assembly and nanotechnology 

including the formulation of siRNA nanostructures for multifunctional and synergistic RNAi 

activities.70-80  

Some relevant examples of siRNA nanostructures (Figure 1.5) include the dumbbell-

shaped nanocircular RNAs which triggered Dicer enzyme cleaving activity resulting in the 

formation of bio-active siRNAs for RNAi activity.81-83 Trimer or tetramer RNA, containing 

multiple siRNA motifs embedded within the same higher-order molecular structure resulted in 

the intracellular release of siRNA for prolonged gene silencing activity as the siRNA 

nanostructures were found to be stable towards nuclease digestion.84,85 The nano ring-shaped 

tectoRNAs also provided unique self-assembled molecular nanostructures which facilitated 

efficient siRNA cellular delivery for RNAi activity.86 A spherical RNA nanostructure identified 

as the siRNA nano-sheet was synthesized by rolling circle transcription, effectively processed by 

Dicer resulting in siRNA production for the inhibition of mRNA expression.87 The 

complementary RNA nanocubes formed an interesting class of nanostructures incorporating six 

dsRNA Dicer substrates, when cleaved produced six siRNAs which resulted in the suppression 

of the reporter, enhanced green fluorescent protein (eGFP) for up to twelve days in breast cancer 

cells using Lipofectamine as a transfection reagent.78 In a related study, RNA nanorings 

containing multiple siRNAs within the nanoparticle formulation resulted in eGFP knockdown.88 

In a recent application, a synthetic supramolecular RNA nano-architecture was used to template 

the design of a novel truncated tetrahedral siRNA scaffold.89 The modular pieces of 

complementary RNA self-assembled into a tetrahedral siRNA scaffold with enhanced cellular 

uptake and RNAi efficacy. siRNA nanoparticles have also been functionalized with RNA 
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aptamers for selective binding to the epidermal growth factor receptor overexpressed on human 

breast cancer cells. Cell uptake of the RNA nanoparticles led to persistent eGFP knockdown. 

Branched siRNA nanostructures self-assembled into three- and four-way junctions have also 

been designed and developed for targeting the luciferase reporter gene for up to five days in 

HeLa cells.90 Thus, the ability for higher-ordered siRNA nanostructures to behave as Dicer 

substrates, resulting in the release of multiple siRNAs that ultimately results in potent gene 

knockdown effects underscores the potential utility of siRNA nanostructures in RNAi screening 

and gene therapy applications. 

In our contributions to RNA nanotechnology, we have developed a novel synthetic method 

for the generation of linear, V, and Y-shape RNA templates that can self-assemble into high-

order siRNA nanostructures.91,80  In this work, higher-order branch and hyper branch siRNAs 

were synthesized by solid-phase RNA synthesis incorporating an orthogonally protected RNA 

branchpoint nucleotide which enabled selective construction of the branch RNA templates.91 The 

branch RNA templates were designed with sequence composition targeting the Glucose 

Regulated Protein of 78 kilodaltons (GRP78) which has been classified as a clinically relevant 

biological marker in the treatment of cancer. The branch siRNAs were found to be stable in 

annealing buffer and Lipofectamine-based transfections in HepG2 liver cancer cells resulted in 

suppression of GRP78 expression and to a more significant extent compared to treatment with 

the control, linear siRNA. Our efforts to expand the repertoire of functional siRNA 

nanostructures culminated with the application of the previously described linear, V-shape, and 

Y-branch RNA templates to self-assemble with complementary RNA to form a variety of siRNA 

nanostructures.80 The siRNA nanostructures were genetically encoded to target multiple GRPs 

and were applied in RNAi screening in cancer cell lines of the cervix, breast, and endometrium. 
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The siRNA nanostructures revealed the influence of GRP activity on cancer cell viability, 

whereby GRP silencing with the multi-GRP targeting siRNA nanostructures resulted in the most 

potent anti-cancer effects. Interestingly, GRP silencing in a non-tumorigenic lung cell line 

displayed modest toxicity effects, underscoring the importance of GRP overexpression and 

function in cancer biology while providing some insights into tumor treatment specificity. 
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Figure 1.5. Representative examples of siRNA nanostructures. Figure adapted with permission 
from Refs. 78, 81, 85, 87-89 (Afonin, K.A.; Viard, M.; Kagiampakis, I.; Case, C.L.; 
Dobrovolskaia, M.A.; Hofmann, J.; Vrzak, A.; Kireeva, M.; Kasprzak, W.K.; Kewal Ramani, 
V.N.; Shapiro, B.A. Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–
RNA Nanoparticles. ACS Nano. 2015, 9(1), 251-259); (Abe, N.; Abe, H.; Ito, Y. Dumbbell-
shaped nanocircular RNAs for RNA interference J. Am. Chem. Soc. 2007, 129,(49) 15108-
15109); (Nakashima, Y.; Abe, H.; Abe, N.; Aikawa, K.; Ito, Y. Branched RNA nanostructures 
for RNA interference. Chem. Commun. (Camb), 2011, 47(29), 8367-8369); (Kim H, Lee JS, Lee 
JB. Generation of siRNA Nanosheets for Efficient RNA Interference. Sci Rep. 2016; 6, 25146) 
;(Afonin, K.A.; Viard, M.; Koyfman, A.Y.; Martins, A.N.; Kasprzak, W.K.; Panigaj, M.; Desai, 
R.; Santhanam, A.; Grabow, W.W.; Jaeger,  L.; Heldman, E.; Reiser, J.; Chiu, W.; Freed, E.O.; 
Shapiro, B.A. Multifunctional RNA Nanoparticles. Nano Lett. 2014, 14, 5662-5671); 
(Zakrevsky, P.; Kasprzak, W.K.; Heinz, W.F.; Wu, W.; Khant, H.; Bindewald, E.; Dorjsuren, N.; 
Fields, E.A.; de Val, N.; Jaeger, L.; Shapiro, B.A. Truncated tetrahedral RNA nanostructures 
exhibit enhanced features for delivery of RNAi substrates. Nanoscale. 2020, 12(4), 2555-2568). 
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  Although we have developed a versatile strategy for the rapid construction of higher-order 

siRNA nanostructures, the inherent challenges associated with cellular RNA delivery and 

stability continue to limit its in vitro and in vivo efficacy, thereby increasing the demand for 

more effective RNA delivery carriers and transfection methods.  

  
1.8 siRNA Delivery Systems 
 

The rapidly emerging applications of gene therapy and therapeutic nucleic acids for the 

replacement or silencing of target malignant genes have increased the demand for the 

development of effective delivery strategies. Several biological barriers restrict the delivery and 

release of siRNAs into target cells for efficient RNAi activity (Figure 1.6). Among the various 

extra- and intra-cellular barriers dampening siRNA efficacy are the endothelial and epithelial 

barriers, as well as tight junctions in selective tissues (e.g., the blood-brain barrier) that limits 

siRNA permeability. Furthermore, changes in pH, enzymatic digestion, and scavenging by the 

immune system may significantly impact siRNA biodistribution and therapeutic index. These 

barriers affect siRNA cellular targeting and penetration, intracellular trafficking, endosomal 

escape, and RNAi activity which ultimately leads to diminished therapeutic activity in the 

absence of an effective delivery system.92,93 Therefore, it is difficult to achieve the desired 

therapeutic effect by direct, fusogenic siRNA delivery due to several biological and cellular 

barriers present in the body.   
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Figure 1.6. Biological barriers (A) Extracellular barriers to RNAi therapy. (a) Endonucleases 
degrade siRNA in circulation; (b) mononuclear phagocytic system, in particular, the 
macrophages remove siRNA within the major clearance organs (such as liver, lungs, and spleen); 
(c) tissue penetration of siRNA is hindered by charge repulsion between the anionic siRNA and 
the plasma membrane of endothelial/epithelial cells, as well as tight junctions in selective regions 
(e.g., the blood-brain barrier) that require transcellular or paracellular transport to reach the target 
tissue. (B) Intracellular barriers to RNAi therapy: endocytosis versus fusogenic uptake. (a) 
Endocytosis of siRNA, which eventually is excreted via vesicle trafficking and exocytosis, leads 
to negligible efficacy. (b) Endocytosis of siRNA, which carries the siRNA through early to late-
stage endosomes, and lysosomes for acidification and degradation, also gives minimal efficacy. 
(c) siRNA can escape from the early endosomes to undergo RNA interference (RNAi) within the 
cytoplasm, but at attenuated potency due to inefficiency of the escape mechanism. (d) Fusogenic 
uptake of siRNA that leads to immediate cytosolic localization and RNAi. Figure adapted with 
permission from: Subhan, M.A.; Torchilin, V.P. siRNA-based drug design, quality, delivery, and 
clinical translation. Nanomedicine: Nanotechnology, Biology, and Medicine. 2020, 29(102239), 
1-20.92 
  

 

The intracellular delivery of siRNAs is a challenging task requiring optimization of 

biological or synthetic vectors which can facilitate efficient cell uptake for RNAi activity.93 Cell 

translocation of siRNA is a multi-step process that requires: i) cell-specific binding, ii) 
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internalization, iii) escape from endocytic vesicles, iv) transport through the cytoplasm and 

release of siRNA to complex with RISC and activate the RNAi pathway for silencing mRNA 

expression (Figure 1.7).94 The selection of effective delivery vehicles that may facilitate siRNA 

bio-activity require A) selection of a proper administration route, e.g. oral vs intravenous or 

infusion injections; B) a colloidal delivery system capable of efficiently condensing siRNA into 

small, monodispersed nanoparticles (≤ 80nm) to penetrate the biological barriers; C) cell-

penetration and release of the siRNA into the cytoplasm for RNAi activity; which may produce a 

desirable D) efficacy and safety response upon administration.94 
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Figure 1.7. Schematic representation of siRNA nanoparticle delivery, uptake, and release into 
the cytoplasm for RNAi activity. siRNA nanoparticles may be encapsulated or complexed with a 
suitable delivery agent for cell uptake. Following cell uptake by endocytosis, siRNA triggers 
endosomal escape and recruitment of the RNAi components, Dicer enzyme (purple) processes 
siRNA substrates for RISC (blue) which recruits mRNA leading to inhibition of protein 
translation and mRNA degradation.  Figure reproduced with permission from: Parlea, L.; Puri, 
A.; Kasprzak, W.; Bindewald, E.; Zakrevsky, P.; Satterwhite, E.; Joseph, K.; Afonin, K.A.; 
Shapiro, B.A. ACS Comb. Sci. 2016; 18, 527-547.94 
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Figure 1.8. Representative siRNA delivery systems for RNAi drug development. Canonical 
liposome formulations (a), DPCiv™ (b), RONDEL™ (c), LODER polymer (PLGA matrix) (d), 
EnCore liposome (e), EDV™ nano cell (f), peptide nanoparticle (g), exosome (h), GalNAc-oligo 
conjugate (i), Multi-RNAi-microsponge (j), pRNA-3WJ (k) and fluorinated oligoethylenimine 
nano assembly (l) Figure reproduced with permission from: Weng, Y.; Xiao, H.; Zhang, J.; 
Liang, X.J.; Huang, Y. Biotechnology Adv. 2019; 37, 801-825.95 

 
 

Multiple delivery systems based on viral and non-viral vectors have been developed to 

introduce siRNA safely and effectively within their cell targets (Figure 1.8).95 Successful 

examples of viral-based siRNA formulation are based on retroviral, adenoviral, adeno-
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associated, and poxvirus vectors, among others. However, viral vectors are limited by significant 

immunogenicity, toxicity, and transgenic capacity size restrictions for efficient cell uptake.96,97 

Nonviral vectors are based on physical and chemical systems, which generally include chemical 

modifiers introduced by bioconjugation strategies that may facility siRNA delivery (e.g. lipid or 

GalNac functionalization) or self-assembly techniques involving: cationic liposomes, polymers, 

peptides, antibodies, and nanomaterials.98,99 Physical methods have also been developed for 

direct transfection of siRNA into target cells. These strategies include particle bombardment, 

magnetofection, and ultrasound electroporation100 or hydrodynamic injection,101 applications. 

However, these physical methods have failed in commercial gene therapy due to their tendencies 

to drastically affect/alter cell-based compositions.102 Therefore, nonviral vectors have gained the 

most traction in recent years due to favorable pharmacological properties while providing 

efficient and safe siRNA delivery. These synthetic delivery systems include: nanoparticles 

(NPs), liposomes, dendrimers, and cationic polymers due to their efficient siRNA 

condensation/release profiles in vitro and in vivo.103 Liposomes and lipid-like materials, based on 

unilamellar, multilamellar, solid-lipid nanomaterials, and lipidoids have been commonly used for 

nucleic acid delivery vehicles. The cationic lipid DOTMA (N-[1-(2,3-dioleyloxy)propyl]-N, N, 

N trimethyl ammonium chloride) has been applied in siRNA transfections into the mouse, rat, 

and human cell lines.104 Despite their utility, liposomes possess safety and toxicity concerns due 

to off-target gene silencing effects as these types of formulations are dispersed in most cell types 

and immunostimulatory side-effects have been reported in vitro and in vivo.104 Modified 

liposomes have been engineered to address these limitations. Application of PEGylated 

liposomes bearing dialkyl and trialkyl cationic lipids were used for generating siRNA lipoplexes 

with enhanced systemic stability, decreased agglutination with erythrocytes, however, with a 
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marked decrease in gene silencing effects relative to control conditions.105 To address this 

limitation, cell targeting/penetrating reagents, have been added to functionalized lipid-siRNA 

formulations. For example, a breast cancer binding peptide has been conjugated to the 

PEGylated liposome for efficient siRNA delivery within MCF-7 breast cancer cells.106 The 

targeting peptide ligand, DMPGTVLP, displayed selective binding and cell uptake within MCF-

7 cells resulting in significant down-regulation of PRDM14 gene expression and PRDM14 

protein synthesis, underscoring its potential utility in cancer-targeted gene therapy. Similarly, 

cell-targeting cationic polymers, such as polyethyleneimine (PEI) have been used as suitable 

siRNA delivery agents due to their ability to condense siRNA and facilitate endocytosis and 

endosomal escape due to the ‘proton-sponge’ effect.107 In this release mechanism, the ionic PEI-

siRNA cargo within the endosome leads to an accumulation of ions and an osmotic pressure 

effect that eventually bursts the endosome and releases the siRNA for RNAi activity.108 In a 

clinically relevant application, co-delivery of the potent chemotherapeutic, doxorubicin, and 

siRNA targeting VEGF expression was formulated within a cholic acid conjugated PEI 

copolymer containing folic acid as targeting ligand for direct delivery in nude mice bearing 

human colorectal adenocarcinoma.109,110 Tumor regression as a result of the combined 

chemotherapeutic and gene therapy effects were observed and specifically related to higher 

levels of apoptosis and necrosis detected from the histological analysis. In this manner, various 

targeting ligands such as small molecules (e.g. folate) peptides and proteins (e.g. transferrin, cell-

targeting peptides) and biologics (e.g. monoclonal and polyclonal antibodies) have been 

formulated with siRNA-delivery agents for more effective and selective gene delivery.111-115 As a 

representative example, a multi-component delivery system has recently been described and 

composed of the peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear 
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peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a 

nanoparticle which enabled siRNA encapsulation and release profile and cellular uptake for 

RNAi activity.115 The formulation effectively silenced Src and RPS6KA5 in the triple-negative 

human breast cancer cell line MDA-MB-231, compared to naïve cells, underscoring their 

potential utility in cancer gene therapy. Compared to their organic/synthetic counterparts, 

inorganic nanoparticles have also been applied in siRNA-mediated transfections and offer a wide 

range of beneficial properties. For example, the high luminescence of quantum dots (QDs),116 

superparamagnetic behavior of iron oxide nanoparticles117, and localized surface plasmon 

resonance of gold nanorods,118 have enabled theranostic (therapy+diagnostic) utility in siRNA 

delivery applications. For example, poly(acrylic acid) and quantum dot excipients were 

combined with a PEGylated cationic polymer for the condensation and release of therapeutic 

siRNA.119 Significantly, the quantum dots enabled stable polyplex formation which was 

visualized by cryogenic transmission electron microscopy (cryo-TEM) and promoted selective 

siRNA release upon polyplex disassembly according to Förster resonance energy transfer 

(FRET). The application of multifunctional and responsive materials in siRNA delivery has thus 

significantly increased their therapeutic utility.  

 
1.9 Thesis Objectives  

The research work described in this thesis is based on selected types of synthetic RNA 

motifs including linear, V, and Y-shaped RNA templates with the ability to self-assemble into 

higher-order siRNA nanostructures.80,91 These multi-functional siRNAs enabled the knockdown 

of the Glucose Regulated Proteins (GRPs) in selected tumor cell lines to explore the influence of 

these chaperone proteins on tumor viability. This RNAi screening approach provides an 

important tool to investigate the impact of oncogene targets on cancer biology while enhancing 
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siRNA therapeutic activity by the synergistic action of silencing multiple oncogenes 

concurrently. Our synthetic RNA work has also enabled the bioconjugation or assembly of cell-

penetrating and cell-targeting peptides,120 lipids,121 fluorescent probes122, and inorganic 

nanoparticles123 for enhancing siRNA delivery and detection while maintaining potent 

knockdown of oncogenic GRP targets for gene therapy in cancer cells.124,125 The novel synthetic 

biology approaches described in this thesis advances these preliminary studies, and serves to 

effectively improve the utility of siRNA-based biomaterial formulations for successful RNAi 

applications in the detection and treatment of cancer. 

Chapter 2 of this thesis describes a novel synthetic strategy for the incorporation of a 

small set of fatty acids into chemically derived siRNAs to improve their metabolic stability and 

cancer cell permeability for RNAi activity. The linear, V- and Y-shape RNA templates (sense 

and antisense strands), were functionalized with a hexylamino linker which was also used as a 

nucleophile in the solid-phase bioconjugation of saturated and unsaturated fatty acids with RNA 

templates (Figure 1.9). The RNA-fatty acid bioconjugates were successfully synthesized 

following an optimized HCTU coupling procedure, purified, and hybridized with complementary 

RNA single strands to afford the amphiphilic self-assembled branch siRNA bioconjugates. The 

bioconjugates were characterized by RP HPLC, MS, DLS, and TEM to confirm the structural 

and biophysical properties. Furthermore, the self-transfection of the siRNA-fatty acid 

bioconjugates and their biological activities within a model PC-3 prostate cancer cell line 

revealed partial cell uptake, which contributed to modest RNAi activity when compared to the 

siRNA controls delivered with the commercially available Lipofectamine transfection reagent. 

Nonetheless, this solid-phase RNA bioconjugation approach provides an important entry point 

for the incorporation of various hydrophobic and amphiphilic functional groups for the 
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development of new RNAi molecules for screening important oncogene targets and for 

improving cancer gene therapy applications.  

 

 

Figure 1.9 Graphical representation of linear, V-, and Y-shape siRNA templates covalent 
bioconjugation strategy for the introduction of fatty acid or fluorescent probes. Figure 
reproduced with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, 
J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Bioconjugate Chem., 2018, 29, 3638–3648.121  

 
 

 

Chapter 3 describes a simple, bottom-up approach for templating RNAs onto gold (Au) 

surfaces for the generation of produce stable Au-siRNA nanoparticles. Further functionalization 

of the RNA strands using our bioconjugation approaches facilitated the incorporation of a 

fluorescent reporter (FITC) or a fatty acid (palmitic acid) used to track cell uptake in PC-3 

prostate cancer (PCa) cells, (Figure 1.10). The resulting Au-functionalized RNA particles were 
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found to be stable under reducing conditions, and self-assembled into primarily small (~10-40 

nm) spherical shaped nanoparticles. The incorporation of FITC within the Au-RNA 

nanoparticles produced a bifunctional probe, which facilitated cell uptake detection in a time-

dependent manner. The dual encapsulation-release profiles of the FITC-labeled Au-RNA 

nanoparticles were validated by time-dependent UV-Vis spectroscopy and spectrofluorimetry 

which showed increases in FITC absorption (λabs: 494 nm) and fluorescence emission (λem: 522 

nm) with increased sample incubation times, under physiological conditions. Cell biology 

revealed the release of siRNA functionalized Au nanoparticles in prostate cancer (PC-3) cells 

which resulted in concomitant knockdown of GRP75, and detectable levels of cell death. The 

direct transfection of multi-functional Au-siRNA nanoparticles may thus have important utility 

in the early detection and treatment in PCa and related solid tumors. 
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Figure 1.10. Graphical representation of the rational design of A) RNA sequence and B) 
bifunctional Au templated RNA particles. Figure reproduced with permission from: Shah, S.S.; 
Cultrara, C.N.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. J. Mater. Chem. B, 2020, 8, 
2169-2176.123 

 
 

In conclusion, Chapter 4 of this thesis will provide a general overview of current and on-

going work aimed at the production of the Au-siRNA nanoparticle formulation bearing cell-

targeting peptides (CTPs), for effective targeting and cell uptake in PSMA+ prostate cancer cells 

(Figure 1.11).  

 
Figure 1.11. Graphical representation of PSMA-specific bifunctional Au templated RNA 
particles with varying cell-targeting peptides. Figure Drawn using Chemdraw Professional 
Software Version 16.0.1.4(77). 
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Chapter 2: Direct Transfection of Fatty Acid Conjugated siRNAs and 
Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer 
Cells 
 
2.1 Abstract 

RNA interference has led to rapid advances in the therapeutic applications of siRNAs 

including recent clinical candidates that have been approved for treatment of rare hereditary 

diseases. In this thesis chapter’s contribution towards the development of therapeutic siRNAs, an 

efficient bioconjugation approach has been developed for the ligation of linear, V and Y-shaped 

RNA templates with a small set of saturated and unsaturated fatty acids. This bioconjugation 

approach is hypothesized to improve siRNA cell uptake and knockdown efficacy of the glucose 

regulated proteins (GRPs) in prostate cancer cells. An optimized HCTU-coupling procedure was 

developed and used for the amidation of saturated and unsaturated fatty acids onto the 5’-ends of 

linear and V-shape RNA templates functionalized with an alkylamino linker that enabled solid-

phase conjugation. Reverse phase ion pairing HPLC was used to validate product conversions, 

while providing trends in amphiphilic properties. Hybridization and self-assembly of 

complementary linear RNA strands yielded linear, V- and Y-shape fatty acid-conjugated siRNAs 

which were characterized by native PAGE, CD spectroscopy, DLS and TEM which confirmed 

multi-component self-assembled structures that were prone towards aggregation. The fatty acid 

conjugated siRNA bioconjugates were evaluated for RNAi activity within GRP overexpressing 

prostate cancer (PC-3). The siRNA bioconjugates with sense strand fatty acid conjugation 

provided more potent GRP knockdown when compared to the antisense strand modified siRNAs. 

However, less GRP knockdown efficacy was observed when compared to the unconjugated 

siRNA transfected with the commercial Trans-IT X2® dynamic delivery system. Flow cytometry 
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revealed limited cell uptake of the fatty acid conjugated siRNAs which likely contributed to 

decreased RNAi activity of the fatty acid conjugated siRNAs without additional transfection 

vector delivery. Regardless, these constructs represent a new contribution higher-order siRNA 

modification that may lead to more efficient siRNA bioconjugates for cancer gene therapy 

applications. 

2.2 Introduction 

In the gene therapy of cancer, therapeutic siRNAs have been used for screening oncogene 

markers and gene therapy applications of malignant oncogenes.1,2 Their therapeutic effects by 

silencing oncogenes that are critically important for tumor survival, proliferation and invasion 

offers renewed hope in the clinical treatment of resilient tumors.3,4 However, the clinical utility of 

siRNAs remains off-set by a wide range of limitations, including poor metabolic stability, limited 

cell uptake, reduced therapeutic efficacy at the localized tumor site and off-target gene silencing 

effects, which limits their utility and increases side-effects.5 In order to address these limitations, 

chemical modifications or conjugation of siRNAs with biologically active functional groups or 

molecular probes have been applied in the diagnosis and therapy (theranostics) of maligant 

oncogene targets in cancer.6 

The Glucose Regulated Proteins (GRPs) are a family of chaperone proteins expressed in all 

cell types where they function in the unfolded protein response associated with protein folding 

under physiological or pathological stress conditions in the lumen of the endoplasmic reticulum.7 

In cancer, GRPs are overexpressed and may be trafficked to the cell surface where they confer 

tumor proliferation, metastatic spread and resistance towards drug treatment.8 The GRPs have thus 

been classified as clinically relevant markers in the detection and treatment of cancer. Many 
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therapeutic strategies have been developed to inhibit or silence the GRPs in cancer,9-11 however, 

off-target side-effects, immunogenicity, poor cell uptake and serum stability have limited their 

therapeutic efficacy raising the need for new and improved leads. Towards this goal, our group has 

previously established a synthesis method for linear, V-, Y- and hyper-branch shaped siRNAs. The 

siRNAs were designed with sequence compositions that target a single and multiple mRNA 

expression sites related to GRP78 expression.12 The GRP78-silencing siRNAs triggered notable 

GRP78 knockdown (50-60%) but only limited (10-20%) cell death in a pediatric liver 

hepatoblastoma cell line (HepG2). In order to improve the therapeutic activity of the siRNAs, the 

higher-order siRNA nanostructures targeting GRP-75, 78 and 94, led to a more potent knockdown 

(50-95%) followed by more significant increases in cell death (50-60%) across a wider panel of 

tumor types.13 Thus, a multi-GRP silencing approach has been proven to be an effective anti-

cancer strategy in both hematological and solid tumor types. In spite of these promising results, 

synthetic strategies that can help improve siRNA metabolic stability, cell uptake, and targeted 

delivery, are still in widespread demand and a focal point of the study described in this thesis 

chapter.  

siRNA bioconjugates have shown the potential to improve pharmalogical properties in 

preclinical and clinical studies related to cancer treatment.5,6,14-18 The incorporation of lipids (fatty 

acids, terpenes and steroids) are among the most widespread siRNA modifications that have 

improved metabolic stability, enhanced cell permeability and effected longer duration of action 

when compared to the control, non-labeled siRNA treatment conditions.19-28 Combinatorial 

libraries of lipid-functionalized (lipidoid) siRNAs have also been found to be effective within in 

vivo models, including the observation of potent, specific and durable gene silencing effects in 

three distinct species, including nonhuman primates.29 Therapeutic efficacy was also observed in 
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liver, lung and peritoneal macrophages underscoring the potential clinical utility of lipidoid 

siRNA. However, these examples are typically limited in scope and the efficiency of lipid-siRNA 

functionalization as well as the location of incorporation, which is typically restricted to either 3’ 

or 5’ conjugation.30-34 Thus, new synthetic approaches that may effectively serve to increase the 

scope and functionality of modified lipid-siRNA bioconjgates may lead to the discovery of more 

potent RNAi therapeutics in the treatment of cancer and other morbidities. 

Despite their utility, lipid siRNA bioconjugates remain limited by their safe and effective 

delivery for potent and long-lasting suppression of malignant gene expression. In this study, we 

have built upon our previous work and that described by others in the literature19-34 by expanding 

the scope of lipidated siRNAs while attempting to address some of their limitations in RNAi 

applications. More specifically, the GRP-targeting linear, V- and Y-shape RNA templates were 

used for the incorporation of fatty acids to investigate their effects on the direct transfection, cell 

uptake and GRP knockdown in prostate cancer (PC-3) cells.  

2.3 Chapter Objectives 

   This thesis chapter describes the design, synthesis, characterization, and biological evaluation 

of lipidated siRNA nanostructures within human cancer cells. The work described within this 

chapter forms part of our on-going efforts in developing effective anti-cancer approaches via 

collaborative, multidisciplinary research. Based on our previous work on the branching RNA 

chemistry, we have expanded the scope of synthetic siRNA constructs with the development of 

high-order lipidated siRNAs while attempting to address some of the shortcomings of siRNAs in 

RNAi applications. The project objectives begin with the selection of the GRP-targeting linear, 

V- and Y-shaped RNA templates that can be self-assembled with their complementary strands to 



 

 46 
 

afford the GRP-silencing siRNAs. These siRNA sequences have been selected to target two sites 

of oncogenic GRP78 and those related to the GRP-75 and 94 mRNA sequences. The 

incorporation of a small library of fatty acids (saturated, unsaturated and polyunsaturated) at the 

5’ ends of the antisense and sense strands of linear, V- and Y-shape RNA templates provides 

lipidated RNA with variable structural and amphiphilic properties. These trends will be 

investigated by a combination of reverse-phase ion-pairing HPLC and UV-Vis 

spectrophotometry. Moreover, experimental studies conducted in collaboration with Drs. Jorge 

Ramos and Uri Samuni at Queen’s College, CUNY, will be based on dynamic light scattering 

(DLS) and transmission electron microscopy (TEM) which will provide valuable insights into 

the sizes, shapes, charge distribution and aggregation potential of the lipid-RNA particles. 

Furthermore, annealing with complementary RNA strands will facilitate the formation of 

lipidated siRNA with and without a fluorochrome (fluorescein isothiocyanate, FITC) label for 

investigating the influence of these functional probes on siRNA secondary structure (CD 

spectroscopy) and stability (thermal denaturation, native polyacrylamide gel electrophoresis and 

serum digestion) which is anticipated to have a direct impact on biological activity. The lipidated 

siRNAs will then be investigated in direct transfection and cell uptake studies (fluorescence 

microscopy and flow cytometry) as well as GRP knockdown at the mRNA (real time polymerase 

chain reaction, qRT-PCR) and protein (western blot) levels of expression within a metastatic 

prostate cancer (PC-3) cell line to determine their utility in cancer gene therapy applications. 

These biological assays will be conducted in collaboration with Drs. Christopher Cultrara and 

Jenny Zilberberg located at the Center for Discovery and Innovation at Hackensack-Meridian 

Health. The results and data presented in this chapter are published and adapted with permission 

from the co-authored publication: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, 
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J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Bioconjugate Chem., 2018, 29, 3638–3648 (Figure 

2.1).35  

 

Figure 2.1. Rational design of lipidated-siRNA bioconjugates with Linear, V-shape and Y-
branch GRP silencing siRNAs. Figure reproduced with permission from: Shah, S.S.; Cultrara, 
C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct 
Transfection of Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated 
Chaperones in Prostate Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35 

 

2.4. Results and Discussion 

2.4.1 Solid-Phase Bioconjugation  

The synthetic siRNA bioconjugates described in this chapter (Table 2.1) are based on the 

sequence compositions used for silencing GRP-75, 78, and 94 expressions in human cancer 

cells.12,13 The linear, V- and Y-shaped RNA templates bearing the nucleophilic 5’-

hexamethylene amino linker within the antisense (A) or sense (S) strands were synthesized by 

automated solid-phase RNA synthesis. Using our previously established synthetic 
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procedures,12,13 RNA synthesis on a controlled pore glass support also enabled the incorporation 

of an orthogonally protected 5’-OLv 2’-OMMT ribouridine phosphoramidite as branchpoint 

synthon. Selective deprotections and RNA synthesis facilitated the production of the V- and Y-

shape RNA templates on solid supports. Following RNA synthesis, an O-(1H-6-

chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, HCTU-based 

peptide (amide) coupling reaction was designed and optimized for the incorporation of 

hydrophobic modifiers (i.e., fatty acids) by solid phase RNA bioconjugation, which has been 

found to be useful for the incorporation of hydrophobic molecules onto oligonucleotide strands.36 

More specifically, short and long-chain (C12-C18) fatty acids with saturated, unsaturated, and 

polyunsaturated long chain alkyl groups were coupled onto the amino-linked RNA template 

strands using HCTU as activator, N, N’-diisopropylethylamine (DIEA) as base and N, N’-

dimethylformamide (DMF) as reaction solvent (Scheme 2.1). Following solid phase 

bioconjugation, RNA samples were cleaved and deprotected from the solid support and analyzed 

by RP IP HPLC to determine reaction conversions. The conjugation reactions proceeded with 

good product conversions (52-75%) in the case of antisense linear RNA functionalization. The 

V- and Y-shape RNA templates were subjected to the HCTU/DIEA coupling reaction for the 

incorporation of palmitic acid which produced good conversions in the case of the V-shape RNA 

bioconjugate (69 %). However, little conjugated product (<5%) was detected in the case of the 

Y-shape RNA template. The latter may be attributed to poor reactivities associated with 

conjugation of fatty acids onto more complex, higher-order RNA templates. We have observed 

similar restrictions with the bioconjugation of fluorescent probes (fluorescein) onto Y-shape 

RNA templates.37 In order to address these limitations, an alternative approach was developed in 

which the 5’-alkylamino group of the linear RNA sense strands were coupled with palmitic acid 
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using our established HCTU/DIEA coupling reaction, followed by hybridization to the linear, V- 

and Y-shape antisense RNA templates (Scheme 2.2). This self-assembly approach enabled the 

production of linear, V- and Y-shape GRP targeting siRNAs containing single, double, and triple 

palmitamide incorporations to explore the influence of fatty acid conjugation on the structure-

activity properties of the siRNA bioconjugates.  

 

Table 2.1. Characterization data of RNA templates and their fatty acid bioconjugates. 

Sampl

e # 

Sample 

Name 

Targetin

g 

Gene 

Sequence
a

 
rt

b
 

(min) 

Mass
c

 

(Cal/Obs) 

1 78A GRP78 5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 5.7 5949.6/5949.6 

2 78S GRP78 5’ rArGrU rGrUrU rGrGrA rArGrA rUrUrC rUrGrA rA 3’ 5.7 6104.0/6103.7 

3 94S GRP94 5’-rGrArA rGrArA rGrCrA rUrCrU rGrArU rUrArC rC-3’ 5.5 6068.8/6069.0 

4 75S GRP75 5’-rArCrU rGrArC rUrCrG rGrArG rArArU rArCrA rA-3’ 5.9 6091.8/6092.3 

5 78AC12 GRP78 (Lauric Acid))C12COOH/5AmMC6/5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 17.3 6311.0/6311.1 

6 78AC16 GRP78 (Palmitic Acid)C16COOH/5AmMC6/5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 21.9 6367.3/6367.2 

7 78AC18:1 GRP78 (Oleic Acid)C18:1COOH/5AmMC6/5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 22.5 6394.0/6393.3 

8 78AC18:2 GRP78 (Linoleic Acid)C18:2COOH/5AmMC6/5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 21.3 6391.2/6391.2 

9 78AC18:3 GRP78 (Linolenic Acid)C18:3COOH/5AmMC6/5’ rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU 3’ 20.3 6389.3/6389.2 

10 7894VA 
GRP78 

GRP94 

2’3’ rCrUrU rCrUrU rCrGrU rArGrA rCrUrA rArUrC rG 5’ 

                                          rU 

3’5’-rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU-3’ 

6.0 12318.0/12318.0 

11 757894YA 

GRP78 

GRP94 

GRP75 

                                                                          2’3’-rCrUrU rCrUrU rCrGrU rArGrA rCrUrA rArUrG rG-5’ 

5’-rUrUrG rUrArU rUrCrU rCrCrG rArGrU rCrArG rU-3’5’-rU 

                                                                                   3’5’-rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC 

rU-3’ 

6.1 18356.3/18356.3 

12 7894VC16 
GRP78 

GRP94 

             2’3’ rCrUrU rCrUrU rCrGrU rArGrA rCrUrA rArUrC rG 5’/5AmMC6/C16COOH 

             rU 

             3’5’-rArUrC rArGrA rArUrC rUrUrC rCrArA rCrArC rU-3’ 

19.0 12723.4/12723.3 

13 78SC16 GRP78 C16COOH/5AmMC6/5’ rArGrU rGrUrU rGrGrA rArGrA rUrUrC rUrGrA rA 3’ 22.1 6522.2/6521.2 
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14 94SC16 GRP94 C16COOH/5AmMC6/5’-rGrArA rGrArA rGrCrA rUrCrU rGrArU rUrArC rC-3’  20.8 6496.1/6496.3 

15 75SC16 GRP75 C16COOH/5AmMC6/5’-rArCrU rGrArC rUrCrG rGrArG rArArU rArCrA rA-3’ 21.1 6520.1/6519.3 

 
aLinear sequence number 1, 5, 6, 7 and 8 represents antisense (A) RNA sequence and the 
corresponding fatty acid bioconjugate to its complimentary sense (S) sequence 2. V-shaped 
siRNA sequences 10 and 12 contains two siRNA sequences targeting GRP78 and GRP94 mRNA 
to its complimentary sense (S) sequences 2 and 3. Y-shaped RNA sequence 11 contains three 
RNA sequences targeting three different sites of GRP78, GRP94 and GRP75 mRNA to its 
complimentary sense (S) sequences 2, 3, 4 along with 13, 14 and 15 as a palmitic acid 
bioconjugate.  bObtained by RP-IP-HPLC using 0.1 mM TEAA in TEAA with 7-70% MeCN, 
pH: 7.1 over 40 min. cCalculated mass (observed mass) by ESI-MS in negative mode (Novatia 
LLC, Newton, PA). Table reproduced with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, 
S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of 
Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated Chaperones in 
Prostate Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35 
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Scheme 2.1.  Solid-phase bioconjugation of the amino-linked linear, V-, and Y-Shaped RNA 
templates with various fatty acids to afford the amide-linked fatty acid-RNA bioconjugates. 
Scheme reproduced with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; 
Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty Acid 
Conjugated siRNAs and Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer 
Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35  
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Scheme 2.2. Self-assembly of i. linear, ii. V- and iii. Y-shape multi-palmitamide labeled siRNA 
constructs. Scheme reproduced with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; 
Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty 
Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated Chaperones in Prostate 
Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35  
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2.4.2 Analysis and Purification of Fatty acid conjugated RNA Templates. 

Following synthesis, the fatty acid conjugated RNA templates (Table 2.1) were purified 

by analytical Reverse-Phase Ion-Pairing High Performance Liquid Chromatography (RP IP 

HPLC) in ≥90% purities. Further, their identities were confirmed by electrospray ionization mass 

spectrometry (ESI MS) in negative mode using the LC/MS facilities at Novatia LLC (Newton, 

PA). Purified RNA templates with and without fatty acid conjugations were also analyzed by 

denaturing (urea) polyacrylamide gel electrophoresis (PAGE) (Figure 2.2) which confirmed 

sample purities and provided a first indication of the structural influence of the fatty acid groups, 

generating more retained bands compared to the unconjugated RNA templates. This trend 

underscores the potential impact of the fatty acid group in increasing the hydrophobicity, size, 

and structure composition of the functionalized RNA. UV-Visible (UV-Vis) spectroscopy was 

also used for sample quantitation at max: 260 nm. 
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Figure 2.2. Denaturing PAGE of fatty acid conjugated linear (78AC12, 78AC16, 78AC18:1, 
78AC18:2, 78AC:3), and V-shape (7894VC16) RNA templates and the unconjugated RNA 
controls (linear 78A, V-shape 7894VA, Y-shape 789575YA). Figure reproduced with permission 
from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, 
J.; Sabatino, D. Direct Transfection of Fatty Acid Conjugated siRNAs and Knockdown of the 
Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–
3648.35 
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2.4.3 RP IP HPLC analysis of fatty acid conjugated siRNAs 

The fatty acid conjugated RNA samples along with their native RNA templates were 

analyzed by RP IP HPLC with a Symmetry C-18 reverse phase column (4.6 x 250 mm, 5 µm 

particle size) using a gradient elution method of 7-70 % (MeCN in 0.1 M triethylammonium 

acetate, TEAA) over 40 minutes (Figure 2.3). These analytical HPLC conditions were used to 

analyze the amphiphilic trends of the linear RNA templates conjugated with a small set of 

saturated, monounsaturated, and polyunsaturated fatty acids (Scheme 2.1, Samples 1-8) with 

varying chain lengths along with the V-shape RNA bioconjugate (Scheme 2.1, Sample 9). 

However, no detectable fatty acid conjugated product was observed with Y-shape RNA (Scheme 

2.1, Sample 10). RP IP HPLC analyses confirmed greater retention (22.5 min) of the lengthier 

(Sample 3, 78AC18:1) fatty acid conjugated RNA when compared to the shorter (Sample 1, 

78AC12) fatty acid bioconjugate (17.3 min) confirming that increasing fatty acid chain length 

increases hydrophobicity onto the RNA sequence, thus providing greater retention on the reverse 

phase column(Figure 2.3). Alternatively, increasing the degree of unsaturation with the 

polyunsaturated fatty acid-RNA conjugates resulted in the shortest retention times (Sample 5, 

78AC18:3, 20.1 min) when compared to the monounsaturated (Sample 3, C18:1, 22.5 min) and 

saturated (Sample 2, 78AC16, 21.9 min) counterparts (Figure 2.3).  
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Figure 2.3. HPLC chromatogram of linear and V-shaped fatty acid-RNA bioconjugates along 
with their corresponding RNA templates (inset) and retention times (min). Figure reproduced 
with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; 
Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty Acid Conjugated siRNAs 
and Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjugate 
Chem., 2018, 29, 3638–3648.35 
 
 

 

It is hypothesized that increasing the cis-double bond character within the polyunsaturated fatty 

acids is expected to minimize their packing arrangement contributing to reduced hydrophobicity 

of the conjugated RNA sequences according to NMR and HPLC data of related saturated and 

unsaturated fatty acid conjugated siRNA.38 Similarly palmitic acid conjugated V-shaped RNA 

template (Sample 10, 7894VC16, 19 min) eluted with comparable retention times when compared 
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to the linear sense strands that were also functionalized with palmitic acid (Samples 6-8, GRP75, 

78, 94 SC16, 20-22 min). Thus, fatty acid chain length and double bond character influences 

RNA hydrophobicity, which in turn may influence RNA hybridization, structure, and biophysical 

properties.  

 

2.4.4 Non-denaturing (native) PAGE analysis of fatty acid conjugated siRNAs 

The purified RNA templates and their complementary RNA strands in their lipidated and 

non-lipidated form were hybridized in annealing buffer (10 mM Tris, 50 mM NaCl, 1 mM 

EDTA, pH 7.5–8.0) using equimolar concentrations (1.25 µM) of the pairing strands. Samples 

were hybridized by heating the complementary sequences at 95 °C (5 min) followed by slow 

cooling to room temperature (22 °C) for 1 h, and overnight storage at 4 °C. siRNA hybridization 

was confirmed by native, non-denaturing 16% polyacrylamide gel electrophoresis (PAGE). In 

this assay (Figure 2.4A), the native, linear siRNA hybrid (Figure 2.4A, Lane 1) migrated fastest 

on the gel when compared to the related linear siRNA-fatty acid bioconjugates (Figure 2.4A, 

Lanes 2-6). Comparatively to the HPLC analyses (Figure 2.3), linear fatty acid functionalized 

siRNAs displayed a gel migration pattern that was consistent with the lengths of the hydrocarbon 

tails, with the lengthier fatty acids (Figure 2.4A, 78AC16-C18, Lanes 3-6) being most retained 

when compared to the shorter one (Figure 2.4A, 78AC12, Lane 2).  Similar retention trends 

were observed on RP IP HPLC (Figure 2.3). Similarly, the V and Y-shaped RNA templates 

(Figure 2.4A, Lanes 7 and 9) were more retained on the gel when compared to their linear 

counterparts, whereas the palmitamide conjugated V-shape siRNA (Figure 2.4A, Lane 8) was 

also found to be more retained on gel when compared to the corresponding V-shape 

unconjugated RNA template (Figure 2.4A, Lane 7). These results confirmed efficient siRNA 
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hybridization of the linear, V- and Y-shape motifs, with the linear and V-shape siRNA 

conferring more retained gel migration when conjugated with their corresponding fatty acids. In 

the case of the V- and Y-shape siRNA bioconjugates, linear sense strand palmitamide 

conjugation facilitated the self-assembly and hybridization of the V-and Y-shape siRNA 

(Scheme 2.2). This one-pot self-assembly strategy enabled the rapid formation of V- and Y-

shape siRNA bioconjugates functionalized with a single, double, and triple palmitamides to 

explore the influence of multiple fatty acid groups on siRNA structure and amphiphilicity 

(Figure 2.4B, Lanes 6, 7 and 9-11). In the native PAGE analysis, the linear siRNA hybrid 

control (Figure 2.4B, Lane 1) migrated fastest on the gel, followed by its palmitamide 

bioconjugate functionalized on either sense or antisense strands (Figure 2.4B, Lanes 2 and 3). 

Similarly, the native V- and Y-shaped siRNA hybrids (Figure 2.4B, Lane 4 and 8) also migrated 

fastest on the gel when compared to the palmitic acid conjugated V-shaped RNA template 

(Figure 2.4B, Lane 5) followed by the more retained V-shape siRNA conjugated with a single 

and double palmitamides (Figure 2.4B, Lane 6 and7). For the Y-shape series, analogous 

migration trends were observed on native gel, with the Y-shape RNA template migrating the 

fastest (Figure 2.4B, Lane 8) followed by the palmitamide conjugated RNA template (Figure 

2.4B, Lane 9) and siRNA hybrids incorporating double and triple palmitamides (Figure 2.4B, 

Lanes 10 and 11, respectively). Taken together, the native gel data confirmed the hybridization 

and self-assembly of linear, V- and Y-shape siRNA bioconjugates incorporating single or 

multiple fatty acids (Figures 2.4A and B).  
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2.4.5. Circular dichroism (CD) analysis of lipidated siRNAs. 

Circular dichroism (CD) spectroscopy was used to investigate whether the fatty acid 

conjugated siRNA hybrids preserved the prerequisite A-type helix geometry for RNAi 

applications.39 The CD spectra (Figure 2.4C) confirmed the A-type structure for the lipidated 

linear, V- and Y-shaped siRNA bioconjugates with a minimum peak at 240 nm and broad 

maxima in between 250-290 nm. Though, small variations in the amplitudes of the molar 

ellipticities at these distinctive wavelengths were observed for the higher-order V- and Y-shape 

bioconjugates representing some perturbation of the fatty acid on siRNA helical geometry.  

 

2.4.6 Thermal Denaturation (Tm) 

The siRNA hybrid thermal stabilities were measured by thermal denaturation (Tm) 

experiments to examine the influence (if any) of the fatty acid groups on siRNA hybridization 

(Figure 2.4D). The Tm data indicates the melting temperature at which 50% of the hybrid 

siRNA will denature to RNA single strands, thereby causing an increase in the observed RNA 

absorption at max: 260nm.40 The melting curves for native and fatty acid conjugated siRNAs 

indicated that the incorporation of various fatty acids generated stable siRNA hybrids (Tm: 60-

64 oC) which were comparable to the native, unconjugated controls (Tm: 58-64 oC). 



 

 60 
 

 
 
Figure 2.4 (A) Native, nondenaturing 16% PAGE of native linear, V and Y-shaped siRNA 
hybrids (Lanes 1, 7 and 9); saturated, unsaturated, and polyunsaturated fatty acid conjugated 
linear siRNA hybrids (Lanes 2-6) along with palmitamide conjugated V-shape siRNA (Lane 8). 
(B) Native, nondenaturing 16% PAGE of native linear, V and Y-shaped siRNA hybrids (Lanes 
1, 4 and 8); palmitamide conjugated linear and V-shaped siRNA (Lanes 2 and 5, respectively); 
palmitamide conjugated linear sense (S) strands hybridized to complementary antisense (A) 
linear, V and Y-shaped RNA templates (Lane 3, 6, 7, 9-11) (C) Circular dichroism spectroscopy 
of linear, V- and Y-shaped siRNAs and their lipid bioconjugates (1.25 µM) in annealing buffer 
(1 mL, 10 mM Tris, 50 mM NaCl, 1 mM EDTA, pH 7.5). (D) Thermal denaturation linear, V- 
and Y-shaped siRNAs and their corresponding lipid bioconjugates (1.25 µM) hybridized in 
annealing buffer (1 mL, 10 mM Tris, 50 mM NaCl, 1 mM EDTA, pH 7.5). Figure reproduced 
with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; 
Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty Acid Conjugated siRNAs 
and Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjugate 
Chem., 2018, 29, 3638–3648.35 
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2.4.7. Serum Stability analysis of siRNAs.  

Fatty acids such as palmitic acid have been used to improve siRNA half-life in biological 

serum and stability towards enzymatic digestion.41,42 In order to explore the influence of fatty 

acid conjugation on siRNA serum stability, the palmitamide conjugated linear siRNA hybrids 

with antisense (C16A:S) and sense (C16)1A:S) strand modifiers in the presence of 10% FBS 

revealed improved stability and resistance towards degradation for up to 24 h when compared to 

the native, unconjugated siRNA hybrid (A:S) (Figure 2.5). These results underscore the 

potential therapeutic utility of the fatty acid siRNAs that may lead to long-lasting gene silencing 

activity in biological systems.  

 
 
Figure 2.5. Serum stability study (10% FBS) of linear siRNA control (A1:S1), palmitamide 
conjugated both antisense and sense linear siRNA (C16 A:S and (C16)1A:S). Figure reproduced 
with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; 
Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty Acid Conjugated siRNAs 
and Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjugate 
Chem., 2018, 29, 3638–3648.35 
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2.4.8. DLS and TEM analysis of fatty acid conjugated siRNAs  

Dynamic light scattering (DLS), and transmission electron microscopy (TEM) were used 

as instrumental tools to investigate the influence of fatty acid conjugation on siRNA 

morphology, size, structure and aggregation as well as zeta potential values demonstrating 

charge distributions (Figure 2.6 and Table 2.2). TEM images of saturated (Figure 2.6A) and 

unsaturated fatty acid conjugated (Figure 2.6B) to linear siRNAs indicated large, spherical 

aggregates of about 300 nm. DLS measurements of these samples showed multimodal size 

distribution suggesting formation of large aggregates. Zeta potential measurements of these 

samples showed an overall reduction in charge density when compared to the native, 

unconjugated siRNA (Table 2.2). Similarly, palmitic acid conjugated to higher-order V-shaped 

RNA displayed a propensity for aggregation, however, without formation of well-defined 

structures (Figure 2.6C). The palmitic acid conjugated to sense strand formed the linear 

palmitamide conjugated siRNA which formed spherical aggregates of about 300 nm (Figure 

2.6D) similar to the ones observed for the antisense strand functionalized palmitic acid-siRNA 

bioconjugate (Figure 2.6A). The palmitamide conjugated sense RNA strands hybridized with the 

V-shape RNA template to form the V-shape siRNA bioconjugate with double palmitic acid 

incorporations (Figure 2.6E). Similarly, the palmitamide conjugated sense RNA strands 

hybridized with the Y-shape RNA template to form the Y-shape siRNA bioconjugate with triple 

palmitic acid incorporations (Figure 2.6F). These multi-labeled higher-order siRNA 

bioconjugates displayed large irregular amorphous aggregates (> 300 nm). Thus, the 

incorporation of multiple fatty acids within siRNA triggers formation of larger, and typically 

undefined aggregates that may have profound effects on siRNA cell biology.  Furthermore, the 

tabulated average data for particle size, polydispersity index and zeta potentials from triplicate 
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measurements are provided in Table 2.2, which supports the observed particle characteristics 

from the TEM and DLS measurements. 

  

 
 

Figure 2.6. Representative DLS derived size distribution and corresponding TEM images of (A) 
saturated (C16), (B) unsaturated (C18:3) linear siRNA and (C) palmitic acid (C16) conjugated V 
shaped siRNA bioconjugates. Palmitic acid (C16) conjugated sense strands were used to 
generate the multi-functionalized linear (single), V (double) and Y-shaped (triple) palmitamide-
siRNA bioconjugates (D-F). Figure reproduced with permission from: Shah, S.S.; Cultrara, C.N.; 
Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct 
Transfection of Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated 
Chaperones in Prostate Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35 
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Table 2.2. Particle size and zeta potential measurements of linear, V and Y shaped RNA-fatty 
acid bioconjugates determined by DLS and TEM. 
 

 

Sample Details 
Sample Name 

Particle Size (nm) Polydispersity 

Index 

Zeta Potential 

(mV) DLSa TEM 

Linear Control A1:S1 480 NA 0.502 -15 

Dodecanoic Acid 

Conjugated 
78AC12 600 NA 0.516 -13 

Palmitic Acid Conjugated 78AC16A 370 130 0.507 -14 

Oleic Acid Conjugated 78AC18:1 370 NA 0.538 -10 

Linoleic Acid Conjugated 78AC18:2 690 450 0.610 -8.3 

Linolenic Acid Conjugated 78AC18:3 240 350 0.472 -7.2 

V shaped RNA Control 7894VA:S 760 NA 0.707 -3.6 

Palmitic Acid Conjugated 7894SVC16 280 500-750 0.644 -4.1 

Y-Shaped RNA control 757894YA:S 340 NA 0.580 -6.9 

Palmitic Acid Conjugated 

(Sense) 
78S(C16)1 290 250-424 0.463 -5.9 

Palmitic Acid Conjugated 

(Sense) 
7894SV(C16)2 340 240-450 0.363 -2.4 

Palmitic Acid Conjugated 

(Sense) 
757894SY(C16)3 300 200-230 0.322 -16 

 

. aDLS analysis data presented are triplicate and having a range of standard deviation of 30-100 nm 
in terms of size depending on the type of samples. Table reproduced with permission from: Shah, 
S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, 
D. Direct Transfection of Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-
Regulated Chaperones in Prostate Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35 
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2.4.9. Biological Activity of siRNA Bioconjugates 
 

Following evaluation of the biochemical and physical properties, the biological activity 

of the fatty acid conjugated linear, V- and Y-shape siRNAs was examined in a PC-3 prostate 

cancer cell line.43 The PC-3 prostate cancer cell line (ATCC® CRL-1435™) was used as a GRP 

overexpressing cell line model to examine the knockdown efficiency of the lipidated siRNA 

constructs.44 The Trans-IT X2® Dynamic Delivery System (Mirusbio®) was used as suitable 

siRNA transfection reagent within the PC-3 cell culture to establish the baseline GRP 

knockdown activity of the unconjugated linear, V- and Y-shape siRNA controls. In this assay, 

the control sequences exhibited potent (60-80%) GRP mRNA knockdown according to RT PCR 

(Figure 2.7A).  Comparatively, the antisense fatty acid functionalized linear siRNAs (Scheme 

2.1, Samples 1-5) transfected directly and without the use of the Trans-IT X2® transfection 

reagent triggered GRP78 mRNA knockdown, albeit to a lesser extent (20-40%) relative to the 

linear siRNA control (80%) transfected with the Trans-IT X2® dynamic delivery system (Figure 

2.7B).  Interestingly, the length of the hydrophobic fatty acid tail and the degree of unsaturation 

did not have any significant impact on siRNA activity. Thus, palmitic acid (C16) which has been 

found to be well tolerated in siRNA applications,19-27 was chosen to functionalize the higher- 

order V- and Y- shape siRNAs for silencing multiple GRPs. In this direct transfection assay, 

GRP78 knockdown (~40%) was noted with the palmitamide conjugated linear, V- and Y-shape 

siRNAs, however, with little effects on GRP75 and 94 mRNA levels (Figure 2.7C). In an effort 

to improve GRP knockdown activity, the palmitamide-functionalized sense strand RNAs were 

hybridized and self-assembled to the complementary antisense strand linear, V- and Y-shape 

RNA templates to afford the siRNA bioconjugates incorporating single, double and triple 

palmitamides (Scheme 2.2). The sense strand modifiers known to be better tolerated and 
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processed in RISC45 were found to improve GRP mRNA knockdown efficacy (~5-60%) upon 

direct transfection within the PC-3 cells (Figure 2.7D); albeit, to a lesser extent when compared 

to the unconjugated siRNAs transfected with the Trans-IT X2® dynamic delivery system (Figure 

2.7A). To provide some rationale for this discrepancy, a cell uptake assay was performed by flow 

cytometry (Figure 2.8). To assess the influence of fatty acid conjugation on siRNA transfection 

efficacy the lipidated siRNA bioconjugates were compared with native, unconjugated siRNA 

transfections with the Trans-IT X2® dynamic delivery system. In this assay, linear, sense strand 

RNAs were functionalized with either palmitic acid or fluorescein isothiocyanate (FITC) 

functioning as reporter probe and hybridized to complementary antisense linear, V- and Y-shape 

RNA templates to afford the multi-labeled siRNA bioconjugates. Flow cytometry revealed 

partial (6 h) cell uptake of the palmitamide-functionalized siRNAs. Comparatively, the native 

siRNAs transfected with the Trans-IT X2® dynamic delivery system maintained FITC cell 

signaling up to 24 h. Thus, partial cell uptake is likely a contributing factor in the modest GRP 

mRNA knockdown (KD) effects observed for the palmitamide-functionalized siRNAs. This may 

be in part due to the larger size aggregates (≥ 300 nm) observed from the DLS and TEM studies 

which may altogether restrict cell permeability.46,47 Additional hydrophobic or amphiphilic 

carriers may be explored in future studies to help improve cell uptake of the functionalized 

siRNAs for more potent RNAi activity.48  
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Figure 2.7. qRT-PCR analysis of GRP mRNA levels in PC-3 cells following (A) transfection of 
linear, V and Y shaped siRNAs with the Trans-IT X2® dynamic delivery system, (B) direct 
transfection of saturated, unsaturated and polyunsaturated fatty acid-siRNA bioconjugates, (C) 
direct transfection of palmitamide conjugated linear, V and Y-shaped siRNA bioconjugates, (D) 
direct transfection of linear, V and Y-shaped siRNA bioconjugates respectively containing a 
single, double and triple palmitamides. Target mRNA levels are relative to a control siRNA and 

represented as the mean fold change  SD of 3 separate trials. *P<0.05 and ***P <0.001 in PC3 
cells for GRP78 KD. Figure reproduced with permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, 
S.D.; Patel, M.R.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Direct Transfection of 
Fatty Acid Conjugated siRNAs and Knockdown of the Glucose-Regulated Chaperones in Prostate 
Cancer Cells. Bioconjugate Chem., 2018, 29, 3638–3648.35 
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Figure 2.8. Time dependent (6-24 h) flow cytometric analysis of linear, V and Y shaped FITC 
labeled siRNAs transfected with the Trans-IT X2® dynamic delivery system (A-C). Direct 
transfection of linear, V- and Y-shape FITC-labeled siRNA containing single (D-F) and multiple 
(G-I) palmitamides within the PC-3 prostate cancer cell line. Figure reproduced with the 
permission from: Shah, S.S.; Cultrara, C.N.; Kozuch, S.D.; Patel, M.R.; Ramos, J.A.; Samuni, 
U.; Zilberberg, J.; Sabatino, D. Direct Transfection of Fatty Acid Conjugated siRNAs and 
Knockdown of the Glucose-Regulated Chaperones in Prostate Cancer Cells. Bioconjugate 
Chem., 2018, 29, 3638–3648.35  
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2.5. Conclusions  

        In conclusion, short and long-chain fatty acids containing saturated, unsaturated and 

polyunsaturated long chain hydrocarbon groups were successfully incorporated within the GRP-

silencing siRNAs by solid phase RNA synthesis. The siRNA-fatty acid bio-conjugates were 

characterized according to their structural and biophysical properties which revealed amphiphilic 

aggregates with stable hybrid and serum stabilities as well as A-type helical secondary structures 

applicable to RNAi activity. Their biological activity in a metastatic (PC-3) prostate cancer cell 

line revealed partial cell uptake, which contributed to modest RNAi activity when compared to 

the siRNA controls, likely due to the formation of large, aggregated particles. Nonetheless, the 

solid-phase RNA bio-conjugation approach reported in this study provides an important entry 

point for the incorporation of various hydrophobic and amphiphilic functional groups onto 

higher-order, multifunctional siRNA constructs. This strategy may enable the development of 

new generation RNAi molecules for screening important oncogene targets and for improving 

cancer gene therapy applications. 

  
2.6 Experimental Section 

2.6.1 Methods and Materials 

Chemical synthesis reagents and solvents were obtained from ChemGenes, Aldrich and 

VWR and used as received. Solid phase RNA synthesis reagents were obtained from 

ChemGenes or Glen Research Inc. and used without further purification. Analytical thin-layer 

chromatography (TLC) was performed on aluminum-backed silica gel plates (Merck 60 F254). 

TLCs were visualized under UV shadowing (260 nm) or staining (10% H2SO4/MeOH). 

Compound purification using silica gel chromatography was performed on 230-400 mesh silica 

(Sorbent Technologies). Molecular weights for the branchpoint uridine phosphoramidite was 
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measured by direct injections on a Hewlett Packard series 1100 MSD equipped with ESI as ion-

source in positive mode using 50/50 v/v MeOH/H2O at a flowrate of 0.5 mL/min. Nuclear 

magnetic resonance spectra (1H, 13C, 31P COSY NMR) were recorded on a Varian NMR AS500 

spectrophotometer. NMR spectra were obtained at ambient temperature using an indirect pulse 

field gradient (ID-PFG) probe. The obtained data was processed using VNMRJ software (version 

2.2). Materials for cell biology were obtained from Thermofisher Scientific, Cell Signaling, Bio- 

legend, Mirus and Invitrogen Life Technologies. 

 
2.6.2 Solid-Phase Oligonucleotide Synthesis 

Synthesis of alkyl (C6) amino linker GRP78 antisense RNA (5’-AUC AGA AUC UUC 

CAA CAC U-3’) and sense RNA (5’- AGU GUU GGA AGA UUC UGA U -3’) were performed 

on a 2000 Å UnyLinker controlled pore glass (CPG) support (ChemGenes) using a 1 µmol scale 

automated synthesis cycle on an ABI 3400 DNA synthesizer. All phosphoramidites were 

dissolved in anhydrous MeCN yielding 0.15 M solutions. The coupling times were 5 minutes 

using 0.25 M 5-ethylthiotetrazole (ETT) in MeCN as the activator. The detritylation times were 

set to 2 min using a solution of 3% dichloroacetic acid in CH2Cl2 (DCM). Capping and oxidation 

steps were performed using a mixture of acetic anhydride/N-methyl imidazole in MeCN and a 

solution of 0.01 M iodine in pyridine/THF/H2O respectively. Following synthesis, 

oligonucleotides were cleaved from the CPG and deprotected with NH4OH: EtOH (3:1 v/v) for 

16 hours at 55 ºC. The crude oligonucleotides were evaporated to dryness and re-suspended in a 

mixture of 1:1.5 v/v DMSO:triethylaminetrihydrofluoride(TEA:THF) (250µL) to complete the 

2’-desilylation reaction at 65 °C for 2 h. The crude RNA was precipitated from the reaction 

mixture with 3 M NaOAc (35µL) in n-BuOH (1 mL). Precipitation was completed in a -80°C 

freezer 30 min prior to centrifugation (~12,000 rpm, 2 min) leaving the crude oligonucleotides as 
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a solid white pellet. Crude oligonucleotides were re-suspended in autoclaved water (1 mL) and 

the yields were determined by UV absorbance measurements at 260 nm. Crude RNA was 

purified by reverse-phase HPLC on a Waters 2695 Alliance system equipped with a 

Symmetry/XTerra RP-C18 reverse phase column (4.6 x 250 mm, 5 µm particle size) and gradient 

elution method of 7-70% MeCN in 0.1M TEAA over 40 minutes. 

 
2.6.3 Solid-Phase RNA Bioconjugation 

The RNA bioconjugates were produced on solid-phase, by combining the fatty acids (7 

mg, 27.3 µmol, 25 eq) with the oligonucleotide-bound resin (0.106 µmol,). A coupling reagent 

(HCTU, 10 mg, 27.3 µmol, 25 eq) was added, and the mixture was suspended in minimum DMF 

(1 mL) and a base (DIEA, 8 µL, 50 eq) was added to initiate the reaction. Reactions were 

conducted in screw-cap Eppendorf tube and performed overnight (16 hrs.) at room temperature 

on a shaker. The CPG was subsequently washed with DMF/DCM/MeOH and dried in vacuo. 

The fatty acid oligonucleotide-bound resin was cleaved and deprotected using NH4OH:EtOH 

(3:1 v/v) for 16 hours at 55 ºC. The crude oligonucleotides were evaporated to dryness and re-

suspended in a mixture of 1:1.5 v/v DMSO: triethylaminetrihydrofluoride (250 µL) to complete 

the 2’-desilylation reaction at 65 °C for 2 hours. The crude RNA bioconjugates were precipitated 

from the reaction mixture with 3 M NaOAc (35 µL) in n-BuOH (1 mL).  Precipitation was 

completed in -80°C freezer 30 min prior to centrifugation (~10,000 rpm, ~5 minutes) leaving the 

crude oligonucleotides as a solid white pellet. The fatty acid RNA bioconjugates was extracted in 

autoclaved water (1 mL), quantitated by UV-Vis spectrophotometry, analyzed, and purified by 

ion pairing reverse-phase HPLC as described above. 

 
 



 

 72 
 

2.6.4 UV-Vis Spectroscopy 

Following cleavage and deprotection, samples were evaporated to dryness on a Speedvac 

concentrator and then re-suspended in 1 mL autoclaved deionized water for analysis. Optical 

absorption spectra were acquired with a HP 8452A Diode Array UV-Vis spectrophotometer. 

Absorption measurements were recorded in between 210-310 nm for RNA samples, which were 

quantified according to the Beer-Lambert law. 

 
2.6.5. Reverse Phase Ion Pairing High Performance Liquid Chromatography (RP 

IP HPLC) 

The crude RNA templates were analyzed by Reverse Phase Ion Pairing High 

Performance Liquid Chromatography (RP IP HPLC) to determine crude purities. Briefly, HPLC 

analyses (~0.1 OD) and purifications (1 OD) were performed on a Waters 2695 Alliance 

Separations Module. Crude RNA templates were dissolved in autoclaved water (1 mL) and 

injected into a Waters Symmetry/XTerra RP C18 reverse phase column (4.6 x 250 mm, 5 µm 

particle size) heated at 60 °C. HPLC analyses and purifications were conducted using a gradient 

of 7-70% eluent C (100% acetonitrile) in eluent A (0.1 M triethylammonium acetate) with a flow 

rate of 1 mL/min, run times of 40 minute and with absorbance detection at 260 nm using a 

Waters 2489 UV/Visible detector. Retention times (min.) and peak areas (% area) were 

integrated with Empower II software and used to confirm RNA purities >90% following sample 

purifications. 

 
2.6.6 Electrospray Ionization Mass Spectrometry (ESI MS) 

All oligonucleotides (0.1-0.4 µM) were dissolved in Millipore water (1 mL) and all the 

mass spectra analyzed by Dr. Mark Hail at Novatia, LLC, Newtown, PA. Samples were analyzed 
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on an Oligo HTCS LCMS system equipped with ESI/MS in negative mode. The data was 

processed by a ProMass software. Theoretical molecular weights were calculated using IDT 

mass analyzer https://www.idtdna.com/calc/analyzer. 

 
2.6.7 Hybridization of fatty acid-siRNA bioconjugates 

Equimolar concentrations of fatty acid-RNA bioconjugates and complementary RNA 

were combined with 15 μL of annealing buffer (10 mM Tris, pH 7.5-8.0, 50 mM NaCl, 1 mM 

EDTA) in a 1.5 mL screw-cap Eppendorf tube. The mixture was vortexed briefly and placed on a 

standard heat block at 95 ± 1 °C for 5 minutes. The samples were then allowed to slowly cool to 

room temperature before placing in a 4 °C fridge for 24 h. before further hybrid analysis. 

 
2.6.8 Native Polyacrylamide Gel Electrophoresis (PAGE) 

Hybrid siRNA samples (as described above) were removed from the fridge and diluted 

with 15 μL 30% sucrose loading buffer (30% sucrose in 5X TAE buffer). The hybrid samples 

were analyzed using 16% native PAGE. Gels were run at 500 V (60 W) for 3-4 h and visualized 

under short wave UV light. Gels were subsequently placed in a Stains-All® (Sigma) solution (25 

mg S8 Stains-All®, 50 mL isopropyl alcohol, 25 mL formamide, 125 mL water). After 2 h, gels 

were removed from the Stains-All® solution and exposed to light to de-stain. 

 
2.6.9 Circular Dichroism (CD) Spectroscopy 

Annealed siRNA samples (1.25 μM) were diluted to 1 mL with annealing buffer and 

transferred to fused quartz cells with a 1 cm path length and maintained within the cell holder at 

RT under N2 for 10 minutes prior to spectral acquisition. Spectra were collected using an Olis 

RSM CD 1000 spectrophotometer as an average of three scans. Spectra were analyzed between 

210-310 nm and raw data were processed using Olis Global Works data analysis software and 
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correcting by subtracting the buffer followed by smoothing the data points. The data was then 

exported onto Windows Excel™ spreadsheet software for plotting the CD spectra as changes in 

molar ellipticities with increasing wavelengths. 

 
2.6.10 Thermal Denaturation (Tm) 

Annealed siRNA samples (1.25 μM) in annealing buffer were transferred to a fused 

quartz cells with a 1 cm path length and maintained within the cell holder at RT under N2 for 10 

minutes prior to spectral acquisition. Spectra were measured on a CARY 3E, UV-Vis 

spectrophotometer equipped with a temperature controller regulating the changes in 

hyperchromicities at 260 nm with increasing temperatures (20-80°C at 1 °C/min) under N2. The 

melting temperatures (Tm) were calculated from the first derivative plots of the melting curves, 

representing the temperature at which 50 % of the duplex has denatured to the corresponding 

single strands. This data was exported into an Excel™ spreadsheet for plotting the Tm curves.  

 
2.6.11 Dynamic Light Scattering (DLS)  

A Malvern Zetasizer, Nano-ZS (Malvern Instruments, UK) employing a 173° scattering 

angle and a 4mW incident He-Ne laser (633 nm) was used to measure the particle sizes 

(hydrodynamic diameter), size distributions and zeta potentials of the siRNA hybrid control and 

siRNA-fatty acid bioconjugates. Samples were measured in triplicates at 25 oC. All samples were 

loaded into folded capillary cells (DTS1070) equipped with electrodes on both sides to allow 

measurement of their zeta potentials and by extension, the stability and degree of aggregation. 

Particle suspensions with highly positive or highly negative zeta potentials are considered stable 

because the electrical repulsion between the particles tends to counter the van der Waals forces 

that would otherwise result in aggregation and precipitation.  
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2.6.12 Transmission Electron Microscopy (TEM) 

TEM analyses of the linear, V and Y-shaped siRNA bioconjugates were performed with a 

JEOL 1200EX Transmission Electron Microscope (JEOL Ltd, Japan) at an accelerating voltage 

of 80 kV. A mixture of 1:1 volume ratio 1% uranyl acetate and sample suspension were prepared 

and 10 µL of this solution placed on a TEM carbon-film-coated copper grid of 300 mesh 

(Electron Microscopy Sciences Inc., Hatfield, PA). Each sample was allowed to sit for five 

minutes on the grid before wicking the excess liquid followed by storage of one week to allow 

the samples to dry. Images were taken with a SIA-L3C CCD camera (Scientific Instruments and 

Applications, Inc.) using the software Maxim DL5 (Diffraction Limited, Ottawa, Canada). 

 
2.6.13 Serum Stability Assay 

siRNA hybrid samples (A:S, C16A:S and A:S(C16)1) were hybridized using the protocol 

described in section 2.6.7 in annealing buffer. An aliquot (50 µL, 30 µM) was added to a 10% 

FBS solution (50 µL in phosphate buffer). The mixtures were incubated at 37 ºC and periodically 

(0 – 48 h) sample aliquots (15 µL) were removed, frozen at -80 ºC prior to analyses. Samples 

were thawed to room temperature (22 ºC) and diluted by 30 % sucrose loading buffer and 

analyzed on a 16% native, non-denaturing PAGE for 2.5 h. The gel was then visualized with a 

Stains-All (Sigma-Aldrich™) solution.  

 
2.6.14 Cell Culture  

Prostate cancer cell line PC-3 (ATCC® CRL-1435™) was cultured in RPMI-1640 

complete growth medium supplemented with 10% (v/v) fetal bovine serum (FBS), and 1% (v/v) 

penicillin/streptomycin (P/S) under 5% CO2 at 37 ºC. For passaging, PC-3 cells were detached 

with 0.25% trypsin and re-suspended with complete culture medium. 
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2.6.15 siRNA Transfections in PC-3 Cells and Flow Cytometry 
 

PC-3 cells were seeded at a density of 9.0 x 104 cells/well, were plated in 24-well culture 

plates containing RPMI complete culture media with 10% FBS. Cells were cultured in a 

humidified incubator set at 37 ºC with 5% CO2. Prior to transfections, the cocktail and control 

siRNA hybrids (7.5 µL, 10 µM, in Opti-MEM, 133 µL) were mixed with the transfection reagent 

(TransIT-X2® Dynamic Delivery System, 9 µL, in Opti-MEM, 250 µL) according to the 

manufacture’s recommendation and the fatty acid–siRNA bioconjugates were transfected 

directly with final concentration of 50 nM. The mixtures were incubated (15 min, 22 ºC) then 

added to the PC-3 cell culture and incubated at 37 ºC with 5% CO2 over a three-day (72 h) 

period. Samples were tested at 3, 6 and 24 h post-transfection to determine internalization 

efficiency. Cells were removed from the well using trypsin and diluted in RPMI-1640 media. A 

Cytomics FC 500 flow cytometer was used for determining time dependent cell uptake. 

 
2.6.16 mRNA Isolation and Gene Knockdown via Quantitative Real-Time 

Polymerase Chain Reaction (qRT-PCR)  

Total mRNA was isolated following transfection (48-72 hr) from TriZol (Ambion) 

preserved cells using a TriRNA Pure Kit (Geneaid), following the manufacturer’s instructions. 

The collected mRNA was then quantitated on a Qubit 3.0 fluorimeter using the Qubit Broad 

Range (BR) assay kit (Thermo Fisher Scientific). mRNA (200 ng) was reverse transcribed into 

cDNA using a high-capacity cDNA kit (Applied Biosystems). RT-PCR was performed using 

pre-developed TaqManTM gene expression primer-probes for GRP78 (assay ID 

Hs99999174_m1), GRP94 (assay ID Hs00437665_g1), GRP75 (Hs00269818_m1), and GAPDH 

(Hs99999905_m1) and TaqManTM fast advanced master mix. qPCR fast assay was carried out 
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on a StepOnePlus (Applied Biosystems). Fold changes were calculated with the ΔΔCt method 

using GAPDH as endogenous control and the negative siRNA as the control sample. 

 
2.6.17 Statistical Analysis  
 
         All data were plotted and analyzed using the GraphPad Prism software, V 7.0d (La Jolla, 

CA). Each experiment was performed in triplicates (N=3). Data is represented as the mean  SD. 

Comparisons between two groups were analyzed using unpaired Student’s t-tests. A probability 

(P) value of less than 0.05 was considered statistically significant. 
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Chapter 3: Bifunctional Au-templated RNA Nanoparticles Enable Direct 
Cell Uptake Detection and GRP75 Knockdown in Prostate Cancer 
 
3.1 Abstract 

Nucleic acids templated on gold (Au) surfaces have led to a wide range of functional 

materials ranging from microarrays, sensors, and probes as well as applications in drug delivery 

and treatment. In this thesis chapter, we describe a simple and novel method for templating 

amino-functionalized RNA onto Au surfaces and their self-assembly into small, discrete 

nanoparticles for gene therapy applications in prostate cancer cells. In our method, sample 

hybridization with a complementary RNA strand with and without a fatty acid (palmitamide) 

produced palmitamide-functionalized double-stranded RNA on the Au surface. The resulting 

Au-RNA particles were found to be stable under reducing conditions according to UV-Vis 

spectroscopy. Sample characterization by DLS and TEM confirmed self-assembly into primarily 

small (~10-40 nm) spherical-shaped nanoparticles expected to be amenable to cell biology. 

However, fluorescence emission (λexc: 350 nm, λem: 650 nm) revealed radiative properties 

associated with gold nanoparticles, which restricted cell biology applications (i.e. cell uptake, 

and cytotoxicity) due to limitations with the emission/scattering detection of gold nanoparticles 

by flow-cytometry and high content screening microscopy. Introduction of fluorescein within the 

Au-RNA particles produced a bifunctional probe, in which fluorescein emission (λexc: 494 nm, 

λem: 522 nm) facilitated cell uptake detection, in a time-dependent manner. The dual 

encapsulation-release profiles of the fluorescein-labeled Au-RNA particles were validated by 

time-dependent UV-Vis spectroscopy and spectrofluorimetry. These experiments respectively 

indicated an increase in fluorescein absorption (λabs: 494 nm) and fluorescence emission (λem: 

522 nm) with increased sample incubation times under physiological conditions. The release of 
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Au-functionalized siRNA particles in prostate cancer (PC-3) cells resulted in GRP75 

knockdown, which led to detectable levels of cell death in the absence of a transfection vector. 

Thus, the formulation of stable, small, and discrete Au-RNA nanoparticles may prove to be 

valuable bifunctional probes in the theranostic study of cancer cells. 

3.2 Introduction 

The advancement of RNA nanomaterials has led to the development of new molecular 

tools capable of screening, detecting, and treating a wide range of malignancies, including 

cancer.1-4 In the fight against cancer, RNA nanomaterials functioning as precision nanomedicines 

have improved target specificity, cell uptake, and anti-cancer activity relative to non-specific and 

toxic chemotherapy and radiative treatment regimens. More specifically, in recent years, metal 

nanoclusters have emerged as a promising class of theranostic agents due to their unique metal 

core and surface-layer properties which facilitate functionalization with bio-active probes for 

bioimaging, biosensing, and therapeutic applications.5-13 Moreover, the recent generation of gold 

(Au) functionalized RNA has enabled the self-assembly of stable RNA nanoparticles that have 

been found to be compatible with cell biology applications.14 These have included the structural 

assembly of molecular beacons,15 and sensors for nucleic acid detection,16 microarrays for gene 

screening and sequencing methods,17 controlled and targeted RNA delivery for gene therapy in 

cells, tissues, and animal models.18-21 Of specific interest, recent studies have demonstrated that 

Au nanoparticles, functionalized with polyethylene glycol (PEG) and polyethyleneimine (PEI), 

respectively applied as biocompatible and condensing agents for RNA cell uptake, along with 

transferrin (Tf) and folate (FA) as cell-targeting ligands have been effectively used to deliver 

siRNAs into LNCaP prostate cancer (PCa) cells.22 Following the endolysosomal escape, the Au-
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siRNA nanoparticles exhibited notable intracellular silencing of the RelA oncogene when 

compared to the non-targeted formulation, suggesting that Au-siRNA nanoparticles may have 

potential in the detection and treatment of PCa. It was also found to be the case with PEI-

functionalized Au nanoparticles bearing anisamide (AA) as targeting ligand.23 In this study, 

siRNA delivery into PC-3 PCa cells resulted in significant (~70%) knockdown (KD) of the RelA 

oncogene in a cell-line dependent manner which expresses the sigma (σ) receptor on the cell 

surface in the absence of serum media. Serum was found to obstruct the requisite ligand-receptor 

interaction required for cell uptake and KD activity. In addition to their theranostic activities, 

Au-functionalized siRNA nanoparticles have also been shown to 1) have enhanced serum 

stability when compared to their native siRNA counterparts,24 2) serve as stimuli-responsive 

materials for controlled siRNA intracellular release under glutathione-reducing cytosolic 

conditions,25 and 3) possess desirable radiative and photothermal properties into the near-infrared 

(NIR) region which is advantageous in producing local heating and cavitation of endosomes, 

resulting in siRNA intracellular escape.26 This is in contrast to siRNA-based formulations which 

are not amenable to cell transfection and in vivo delivery of siRNA due to their limited 

capabilities of 1) condensing and releasing siRNA at the target site for RNAi silencing activity, 

2) conferring serum stability, 3) generating small, discrete and neutral nanoparticle formulations 

for efficient cell uptake and 4) limiting off-target silencing and toxicity effects.27-29 Thus, Au-

siRNA formulations have resulted in successful gene silencing applications and may form the 

basis for the development of potent therapeutic interventions against malignant oncogene targets. 

Glucose-regulated proteins (GRPs), are a class of chaperone proteins that serve as the 

main regulators of the unfolded protein response under physiological and pathological stress 

conditions in cells.30 GRPs in the lumen of the endoplasmic reticulum (ER) promote protein 
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folding activity, in the mitochondria, they interact with pro-apoptotic executors that regulate cell 

survival/death responses and at the cell surface, the direct signal transduction. Moreover, GRPs 

have been found to be over-expressed and cell surface localized in a wide range of cancer types, 

where they regulate cancer initiation, proliferation, adhesion, and invasion which contributes to 

metastatic spread and chemoresistance. Thus, the GRPs have been classified as clinically 

relevant biological markers in cancer detection and treatment.30 Among the GRPs, the Glucose 

Regulated Protein of 75 kilodaltons (GRP75/Mortalin) has been classified as a homolog of the 

Heat Shock Protein of 70 kilodalton (HSP70) and functions primarily as a mitochondrial 

chaperone where it regulates cell growth and survival related to mitochondrial-dependent cell 

death pathways.31 GRP75 is localized in the ER where it assists in protein folding and at the 

plasma membrane where it confers cell survival from complement-dependent cytotoxicity (CDC) 

pathways.32 Moreover, GRP75 has been strongly associated with tumor resistance, survival, and 

proliferation, making it a clinical target for the detection and treatment of certain tumor types.33-

36 For example, GRP75 has been found to be overexpressed in tumors of the colon, liver, brain, 

breast, and skin, where it functions as an important regulator of tumor cell growth and 

survival.37,38 In PCa, GRP75 has been detected by western blot and correlated with a visceral 

metastasis-derived (PC-3M) cell line.39 Knockdown or inhibition of GRP75 was found to reverse 

its pro-survival effects resulting in tumor apoptosis.40-42 Therefore, therapeutic targeting of 

GRP75 has potential anti-cancer implications. 

 
3.3 Chapter Objectives 

In this chapter, our objective is to develop a methodology that improves cell-uptake and 

GRP75 knockdown efficacy in PCa cells using Au-siRNA nanoparticle-formulations. Towards 

this goal, we have pioneered a versatile solid-phase synthesis strategy for the generation of the 
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linear, branch, and hyper-branch RNA templates for their self-assembly into higher-order siRNA 

nanostructures.43,44 Significantly, these constructs silenced GRP75, GRP78, and GRP94 

expressions in the liver (HepG2), endometrial (AN3CA), cervical (HeLa), and breast (MDA-

MB-231) cells resulting in synergistic anti-cancer effects. Recent efforts to expand the scope and 

functionality of the siRNA nanostructures resulted in the formulation of fluorescently labeled45 

and fatty acid conjugated46 constructs that exhibited modest KD and toxicity effects in PCa cells 

in the absence of a transfection vector. Overcoming this siRNA delivery challenge is a critical 

requirement for successful cell-based gene therapy applications.  

To improve the cell uptake and theranostic utility of our multi-functional siRNA 

nanostructures in PCa cells, this thesis chapter will describe the rational design, synthesis, 

characterization, and biological evaluation of newly assembled bifunctional Au-templated RNA 

nanoparticles. The synthetic method for the formulation of Au-RNA particles will be based on a 

novel bottom-up approach for nucleating synthetic double-stranded (ds) RNA in which the 

antisense (A1) strand bearing a reactive alkylamino linker will used to template RNA onto the 

surface of reduced Au particles. The complementary sense (S1) strand will be functionalized 

with and without a palmitamide (C16) fatty acid group or fluorescein isothiocyanate (FITC) as 

fluorescent (FL) reporter to generate the bifunctional Au-templated siRNA particles targeting the 

GRP75 oncogene (Figure 3.1). This is in contrast to the commonly used alkylthio modifiers on 

DNA and RNA for Au surface immobilization studies.47,48 Comparatively, this novel method 

involves the alkylamino linkers which are anticipated to provide the dual advantage of 

functionalization with a biological probe on the S1 strand and using the A1 strand for assembly 

onto the Au surface to generate the purported bifunctional Au-RNA particles (Figure 3.1B). The 

sequence composition of the dsRNAs encompassed the target sequences for the siRNAs 
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silencing GRP75 expression in PCa (PC-3) cells (Figure 3.1A).44-46 The formulation will then be 

characterized by a combination of UV-Vis and fluorescence spectroscopy which will provide 

insights into the photophysical properties, specifically related to the fluorescence 

excitation/emission profiles for Au (λexc: 350 nm, λem: 650 nm) and FITC (λexc: 494 nm, λem: 522 

nm). In collaboration with Drs. Uri Samuni and Jorge Ramos at Queen’s College, City 

University of New York, the relative sizes, shapes, uniformities, and charge distributions of the 

Au-siRNA particles will be determined by a combination of dynamic light scattering (DLS) and 

transmission electron microscopy (TEM). Small particles, uniform, and of neutral charge are 

anticipated to be amenable to cell biology applications. In collaboration with Drs. Christopher 

Cultrara and Jenny Zilberberg at the Center for Discovery and Innovation, Hackensack-Meridian 

Health, the cell-uptake, GRP75 KD, and cell death effects in PC-3 prostate cancer cells will be 

evaluated. This thesis chapter thus describes our published collaborative work, highlighting the 

formulation, characterization, and biological evaluation of GRP75 silencing Au-siRNA 

formulations for anti-cancer applications.49  

Texts and figures described in this thesis chapter have been adapted with permission from our 

publication Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. J 

Mater Chem B. 2020, 8(10), 2169-2176.49 
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Figure 3.1. Rational design of (A) GRP75 targeting siRNA bioconjugates and (B) bifunctional 
Au-templated RNA particles. Figure reproduced with the permission from: Shah, S.S.; Cultrara, 
C.N.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-
217.49  

 

3.4 Results and Discussion 

3.4.1. Synthesis of Bifunctional Au-templated RNA particles 

The rational design and synthesis of self-assembled Au-RNA nanoparticles were based 

on templating linear RNA sequences functionalized with a reactive hexamethylene amino linker 

at the 5’-termini of the antisense (A1) or sense (S1) single strands onto the Au surface under 

reducing conditions. This was followed by self-assembly with the complementary strands to 

generate the GRP75 targeting siRNA-Au particle formulation. Furthermore, adopting our 

previously reported bioconjugation strategies,45,46 the S1 strands were conjugated with either 
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palmitic acid (C16) or fluorescein isothiocyanate (FITC). The biological probes were used 

respectively for facilitating cell uptake and tracking biological activity in cells. Following 

synthesis of the functionalized RNA strands, the samples were cleaved, deprotected from the 

solid support, and purified by RP IP HPLC with purities >90% for the generation of the 

bifunctional Au-RNA particles. 

The formulation strategy for the bifunctional Au-RNA particles is based on a newly 

developed bottom-up approach, in which the 5’amino-functionalized A1 RNA single strands 

were expected to facilitate in-situ nucleation and growth of Au-RNA nanoparticles using mild 

reducing conditions (citric acid) in RNA annealing buffer (10 mM Tris, 50 mM NaCl, 1 mM 

EDTA, pH: 7.1). More specifically, this novel formulation approach required reduction of gold 

salts (hydrogen tetrachloroaurate (III) trihydrate, HAuCl4.3H2O, 0.01 M), with a mild reducing 

agent (trisodium citrate trihydrate, Na3C6H5O7.3H2O, 0.1%) along with hybridization of 

equimolar concentrations (1.25 µM) of the complementary RNA strands (A1+S1) in RNA 

annealing buffer. This multi-component one-pot reaction was heated at 95 °C for 5 minutes 

followed by slow cooling to room temperature (22 °C) and overnight storage in the fridge (4 °C) 

before sample analysis (Scheme 3.1). In this manner, the Au-RNA formulation was anticipated 

to consist of a core of metallic (Au) nanoparticles decorated with surface functionalized GRP75-

targeting siRNAs bearing a palmitamide or FITC group for cell biology.  
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Scheme 3.1. Formulation strategy for the generation of bifunctional Au-RNA particles. Scheme 
reproduced with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, U.; 
Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49  
 

3.4.2. Characterization of bifunctional Au-RNA particles 

The physicochemical properties of the bifunctional Au-RNA particles were assessed by 

UV-Vis spectroscopy, to determine the characteristic absorption profiles of the RNA (λmax: ~260 

nm) and metallic (Au) (λmax: ~530 nm) components (Figure 3.2A). A characteristic color change 

from a clear, transparent solution to a deep red color was initially observed and attributed to the 

reduction of the Au salts (HAuCl4; λmax: ~302 nm) and the appearance of the characteristic 

surface plasmon absorption band of Au nanoparticles (λmax: ~530 nm).47 These characteristic 

absorption bands provide supportive evidence for the formation of stable Au-RNA particles, 

without any observable sample precipitation for weeks at 4 oC. However, further characterization 

using UV-Vis spectroscopy and DLS will be required to confirm sample stability. Interestingly, 

conjugated dsRNA bearing palmitamide (C16) or FL (FITC) labels on the S1 strands produced 

stable bifunctional Au-RNA particles, validating the reactivity of the free 5’-alkylamino termini 

from the complementary A1 strands for nucleation and growth of the Au-RNA particles, while 
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the complementary S1 strands provide further functionalization with bio-active probes. This is in 

contrast to the commonly used alkylthio modifiers on DNA and RNA for Au surface 

functionalization, which is prone to cross-linking under oxidative conditions due to its highly 

reactive nature, and may thus restrict the extent of functionalization of bio-active probes on the 

Au surface.48 Alternatively, our new method of using the alkylamino linkers on the A1 or S1 

strands offers the dual advantage of conjugation with a biological probe on the S1 strand and 

functionalizing the A1 strand onto the Au surface to generate the putative bifunctional Au-RNA 

particles.  

 

Figure 3.2.  A) UV-Vis and B) Fluorescence spectra of Au-RNA particle formulations along 
with their dsRNA hybrid controls (75A1S1, NSA1S1). The inset provides a depiction of sample 
color changes (clear-to-deep red) without noticeable precipitation which is indicative of stable 
Au-RNA particles. C16 refers to palmitamide conjugation, 75 refers to GRP75 silencing siRNA, 
A1, S1 refers to the antisense, and sense dsRNA strands, NS refers to the non-specific dsRNA 
control. FITC (FL) or C16 (palmitamide) conjugation of the sense (S1) strand. Figure reproduced 
with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; 
Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49  
 

Fluorescence emission spectroscopy was also performed to evaluate the fluorescence 

emission intensities of the Au-RNA particles (Figure 3.2B). The fluorescence emission 

properties of the Au-RNA particles were determined with and without the fluorescein (FITC) 
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probe. Au-RNA particles required UV excitation (λex: ~350 nm) in order to provide an emission 

(λem: ~650 nm) in the red region of the visible spectrum. Meanwhile, the FITC-labeled Au-RNA 

particles displayed characteristic excitation (λex: ~495 nm) and emission (λem: 522 nm) bands for 

the (FITC) fluorophore, which were observed well into the visible region of the electromagnetic 

spectrum. The latter is a desirable property for cell biology studies which avoids the use of UV 

lasers that may be detrimental to cell viability. Therefore, the bifunctional FITC-labeled Au-

RNA particles were selected to determine cell uptake within PC-3 prostate cancer (PCa) cells.  

Prior to biological studies, DLS and TEM were used to determine the sizes, shapes and 

surface charge densities (zeta-potential) of the Au-RNA particles. Previous studies have shown 

that large, polyanionic aggregates of RNA particles abrogated their cell uptake and biological 

activity.28,50 Therefore, DLS and TEM were conducted in order to determine whether the Au-

RNA particles formed small, discrete, and neutrally charged nanoparticles that may facilitate cell 

uptake for biological activity in the absence of a transfection reagent. According to the DLS data, 

the linear RNA hybrid controls (75A1S1, NSA1S1, and 75A1S1C16) were prone to aggregation, 

producing particles of hydrodynamic diameters ranging from ~480-1200 nm (Figure 3.3, D-F 

and Table 3.1). These samples showed only slightly negative zeta potential values (-0.6 to -2.5 

mV) which suggests a strong tendency to aggregate as confirmed by the observed size 

distribution data (Table 3.1). In general, the larger the value of the absolute magnitude of the 

zeta potential (regardless of if positive or negative), the more stable the particles in the solution. 

These samples also showed modest polydispersity indices (0.5-0.6) suggesting a large 

distribution of sizes, typical of particles that tend to aggregate (Table 3.1). In comparison, the 

Au-RNA particles showed a primary population of small size hydrodynamic diameters, ~24-30 

nm (Figure 3.3, A-C, and Table 3.1). The Au-RNA particles also showed negative zeta 
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potentials of larger absolute values (-12 to -17 mV) and lower polydispersity indices (0.37-0.51) 

when compared to the RNA controls (Table 3.1). These results respectively suggest particles 

with higher stability in solution and narrow size distributions that may render them applicable to 

cell biology applications.  

 

Table 3.1. DLS data for RNA hybrids with and without gold nanoparticles.a 

Samples Effective Particle Size (nm) Polydispersity Index Zeta Potential 

75A1S1 674 ± 146 0.55 ± 0.11 -1.1 ± 0.58 

NSA1S1 1186 ± 77 0.58 ± 0.03 -0.6 ± 0.58 

75A1S1C16 484 ± 50 0.63 ± 0.10 -2.5 ± 1.40 

75A1S1_Gold 24 ± 2 0.37 ± 0.09 -17.6 ± 1.7 

NSA1S1_Gold 19 ± 2 0.51 ± 0.06 -12.6 ± 1.2 

75A1S1C16_Gold 102 ± 66 0.41 ± 0.07 -17.1± 1.65 

aTable reproduced with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, 
U.; Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49 

The TEM images were consistent with the DLS data and provided further insight into 

particle sizes, morphology, and extent of aggregation for the linear RNA hybrid controls 

(75A1S1, NSA1S1, and 75A1S1C16) and the corresponding Au-RNA (75A1S1_Gold, 

NSA1S1_Gold, and 75A1SC16_Gold) particles. Most notably, the Au-RNA samples were found 

to be 10-20-fold smaller when compared to the RNA hybrid controls. For example, the Au-RNA 

(Figure 3.3, A-C) samples formed small, spherical nanoparticles (~15-44 nm) whereas the linear 

RNA hybrid controls (Figure 3.3, D-F) produced larger, non-uniform, polydisperse aggregates 

(~1-2 m). Interestingly, incorporation of the palmitamide (C16) group resulted in larger 
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particles in the control RNA hybrid (Figure 3.3, F) when compared to the Au-RNA particles 

(Figure 3.3, C). It can be rationalized that in the absence of the Au nanoparticles, palmitamide 

provided an increase in RNA amphiphilicity which enhanced sample sizes (~124-1861 nm) and 

the potential for aggregation in aqueous media.46 However, the Au-RNA nanoparticle 

formulation effectively served to restrict size, shape, while maintaining high surface zeta 

potentials which minimizes aggregation, making the nanoparticles applicable to cell uptake and 

downstream cell biology studies.  
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Figure 3.3. Representative TEM images (grayscale pictures) and corresponding DLS derived 
size distributions (red histograms) of Au-RNA hybrids (A) 75A1S1_Gold, (B) NSA1S1_Gold 
and (C) 75A1S1C16_Gold, and corresponding RNA hybrid controls (D-F) respectively. Figure 
reproduced with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, U.; 
Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49 
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3.4.3. Biological Activity of Au-RNA Nanoparticles 

Following evaluation of chemical and physical properties, the biological activity of the Au-

RNA nanoparticles was evaluated in a metastatic prostate (PC-3) cancer cell line. Initially, cell 

uptake experiments were conducted to establish the cell delivery potential of the Au-RNA 

nanoparticles with and without the commercial Trans-IT X2® dynamic delivery system 

functioning as a suitable RNA transfection reagent in suspension and adherent cancer cell lines.51 

Cell Insight CX5 high content screening microscopy (Thermo Fisher Scientific) was used to 

compare and visualize the time-dependent (2-30 h) cell uptake of the bifunctional FITC-labeled 

Au-RNA nanoparticle formulation in the absence of a transfection reagent (Figure 3.4, A). 

Significantly, an increase in fluorescence (FITC) signaling was observed as a function of time, 

which exceeded the signal detected by the control non-functionalized gold nanoparticles and the 

FITC-labeled RNA transfected with the commercial Trans-IT X2® dynamic delivery system 

(Figure 3.5). Thus, the FITC-labeled Au-RNA nanoparticle formulation was found to be 

amenable to direct PC-3 cell transfection, in the absence of an additional delivery system.  Cell 

uptake was also detected in the absence of the C16 (palmitamide) group, which according to a 

previous study was incapable of achieving efficient RNA cell uptake for biological activity, 

presumably due to the large aggregated structures observed.46 Moreover, it was also 

hypothesized that the enhanced fluorescence emission observed from the direct transfection of 

the FITC-labeled Au-RNA nanoparticles may be attributed to the intracellular separation and 

release of the FITC-labeled S1 strand from the Au-RNA nanoparticle formulation.  

In order to provide supporting evidence into the increase in fluorescence emission signal from 

the bifunctional FITC-labeled Au-RNA nanoparticles, time-dependent FITC absorption and 

fluorescence emission assays were performed on a SPARK multimode microplate reader at 37 
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°C for 24 h (Figure 3.4, B). Increases in sample absorption (λabs: 495 and 530 nm) and 

fluorescence emission (λem: ~525 nm) as a function of time (2-24 h) were detected under 

physiological conditions (10 mM Tris, pH 7.5-8.0, 50 mM NaCl, 1 mM EDTA, pH 7.1) which 

served to mimic sample conditions for the cell uptake experiments. The two observable 

absorption bands once again served to support the presence of the bifunctional FITC-labeled Au-

RNA formulation, with characteristic absorption bands for FITC (λabs: 495 nm) and the surface 

plasmon band (λabs: 530 nm) for the metallic (Au) component. Comparatively, the FITC-labeled 

RNA samples absent of the Au component also produced strong increases in fluorophore 

absorption and emission into the visible (green) region. Taken together, the bifunctional FITC-

labeled Au-RNA nanoparticles effectively serve as time-dependent molecular beacons, emitting 

enhanced signal detection with time under physiological conditions that are applicable to cell 

biology. This phenomenon is critically important to enhanced sample detection in cancer cells 

that may lead to early-stage diagnosis and/or preventative treatment regimens.  

The RNAi activity of Au-siRNA nanoparticles (75A1S1_Gold, NSA1S1_Gold, and 

75A1S1C16_Gold) along with the unfunctionalized siRNA controls (75A1S1, NSA1S1, and 

75A1S1C16) targeting GRP75 was next evaluated in the PC-3 cells. The siRNA controls were 

transfected with the Trans-IT X2® dynamic delivery system while the Au-siRNA nanoparticles 

were transfected directly and without the use of any transfection reagent. The knockdown 

efficiency was monitored by western blot at 72 h post-transfection. Downregulation of GRP75 

protein expression levels (Figure 3.4, C) was observed to a comparable extent for the control 

siRNA sample (75A1S1_TX2) as well as the Au-siRNA nanoparticle formulation 

(75A1S1_Gold), validating its utility in downstream biological assays. Moreover, a serum 

stability assay (10 % FBS) proved the Au-siRNA formulation to be stable in serum for at least 24 
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h (Figure 3.4, D), whereas the control, naked siRNAs, even with the C16 palmitamide group 

proved to be much more susceptible to nuclease degradation, even after a much shorter 

incubation period (2 h). 

 
Figure 3.4. Biological activity of Au-siRNA nanoparticles. (a) Time-dependent (2-30 h) direct 
PC-3 cell uptake detection of bifunctional FITC-labeled Au-siRNA nanoparticles. Images were 
captured at 10X magnification. (b). Time-dependent (1-24 h) FITC (FL) fluorescence emission 
detection (λmax: 522 nm) of (X1) FITC-labeled siRNA; (X2) FITC-labeled Au-siRNA and Time-
dependent (1-24 h) FITC absorption detection (λmax: 495-500 nm) of (Y1) FITC-labeled siRNA; 
and Au absorption detection (λmax: 530 nm) (Y2) FITC-labeled Au-siRNA at 37 °C, (c). Western 
blot of GRP75 knockdown in PC-3 cells, and (d). Serum stability (10% FBS) of linear, control 
siRNA (75A1S1), C16 palmitamide conjugated siRNA (75A1S1C16), Au-siRNA 
(75A1S1_Gold), and palmitamide conjugated Au-siRNA (75A1S1C16_Gold) nanoparticles.  
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C16 refers to palmitamide conjugation, 75 refers to GRP75 silencing siRNA, A1, S1 refers to the 
antisense, and sense dsRNA strands, NS refers to the non-specific dsRNA control. FITC (FL) or 
C16 (palmitamide) conjugation of the sense (S1) strand. Figure reproduced with the permission 
from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. J Mater 
Chem B. 2020, 8(10), 2169-217.49 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. High content screen microscopy images for PC-3 cell uptake by FITC-tagged RNA 
hybrids and citrate-stabilized gold nanoparticles at 30 h with the Trans-IT X2® dynamic delivery 
system. Figure reproduced with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, J.A.; 
Samuni, U.; Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49 
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A cell viability stain using Annexin/PI confirmed the toxicity of the Au-siRNA formulation, 

providing a significant increase (40-50%) in early and late-stage apoptosis relative to the control 

conditions (30-35%), in which siRNA was transfected with the commercial Trans-IT X2 

dynamic delivery system (Figure 3.6). Thus, this novel Au-siRNA formulation may enable a 

theranostic approach in the early detection and treatment in PCa and related solid tumors.   
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Figure 3.6. Flow cytometry data for PC-3 cell viability using Annexin V-PI stain. Detection of 
live cells (Annexin V-, 7AAD-), early (Annexin V+, 7AAD-) and late (Annexin V+, 7AAD+) 
stage apoptosis, and necrosis (Annexin V-, 7AAD+). Quadrants indicate cell viability as the 
following: AK3 (1) healthy cells; AK1 (1) cells undergoing early apoptosis; AK2 (1) cells 
undergoing late apoptosis and AK4 (1) necrotic cells. PC-3 cells treated with i. no treatment, Au 
nanoparticles at 1 µg (ii.) and 2.5 µg (iii.) iv. GRP75 siRNA + Trans-IT X2 dynamic delivery 
system, v. non-specific siRNA control + Trans-IT X2 dynamic delivery, vi. GRP75 C16-siRNA, 
vii.  GRP75 siRNA-Au, viii., non-specific siRNA-Au, and viv. GRP75 C16-siRNA-Au 
nanoparticles. Figure reproduced with the permission from: Shah, S.S.; Cultrara, C.N.; Ramos, 
J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. J Mater Chem B. 2020, 8(10), 2169-217.49 
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3.5 Conclusions 

This thesis chapter describes the synthesis, characterization, and biological evaluation of 

a new class of bifunctional Au-RNA nanoparticles. A newly developed, simple, bottom-up 

approach using alkylamino modified RNAs produced stable and small Au-RNA nanoparticle 

formulations bearing either a fluorescent reporter or a fatty acid group to track cell uptake in PC-

3 PCa cells. Significantly, the bifunctional FL-labelled Au-siRNA nanoparticles absent of a C16 

palmitamide delivery vector or an external commercial transfection reagent enabled direct cell 

uptake in PC-3 cells, which led to concomitant GRP75 knockdown and cell death. Consequently, 

this novel Au-RNA theranostic approach may significantly enable early detection and treatment 

in PCa and related solid tumors. Our on-going and future work are aimed at incorporating cell-

targeting ligands within the Au-siRNA nanoparticle formulation to effect specific cancer 

detection and treatment in cell cultures and within tumor-bearing mice models.  

3.6 Experimental Section 

3.6.1. Materials and Method 

Chemical synthesis reagents and solvents were obtained from ChemGenes, Aldrich, and 

VWR and used as received. Solid-phase RNA synthesis reagents were obtained from 

ChemGenes or Glen Research Inc. and used without further purification. Citrate stabilized Au 

nanoparticles (~20 nm) used as controls were obtained as a gift sample from BBI Solutions, 

Cardiff, UK. Materials for cell biology were obtained from Thermo Fisher Scientific, Cell 

Signaling, Bio-legend, Mirus, and Invitrogen Life Technologies and used as received according 

to the manufacturer’s protocols. 
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3.6.2 Solid phase RNA Synthesis 

 
Synthesis of alkyl (C6) amino linker GRP75 antisense RNA (5’-UUG UAU UCU CCG 

AGU CAG U-3’), sense RNA (5’-ACU GAC UCG GAG AAU ACU A-3’), and alkylamino 

linked nonspecific antisense RNA (5’-AGU UCA ACG AGU AUC AGA A-3’) and sense RNA 

(5’- UGC UGA UAC UCG UUG AAC U-3’) were performed on a 2000 Å UnyLinker controlled 

pore glass (CPG) support (ChemGenes) using a 1.0 µmol scale automated synthesis cycle on an 

ABI 3400 DNA synthesizer. All phosphoramidites were dissolved in anhydrous MeCN yielding 

0.15 M solutions. The coupling times were 300 s using 0.25 M 5-ethylthiotetrazole (ETT) in 

MeCN as an activator. The detritylation times were set to 120 s using a solution of 3% 

dichloroacetic acid in CH2Cl2 (DCM). Capping and oxidation steps were performed using a 

mixture of acetic anhydride/N-methyl imidazole in MeCN and a solution of 0.01 M iodine in 

Pyr/THF/H2O respectively. Following synthesis, oligonucleotides were cleaved from the CPG 

and deprotected with NH4OH: EtOH (3:1 v/v) for 12-16 h. at 55 °C. The crude oligonucleotides 

were evaporated to dryness and re-suspended in a mixture of 1:1.5 v/v DMSO: triethylamine 

trihydrofluoride (100 µL:150 µL, 250 µL) to complete the 2’-desilylation reaction at 65 °C for 

120 min. The crude RNA was precipitated from the reaction mixture with 3.0 M NaOAc (25 µL, 

pH = 5.2) in n-BuOH (500 µL). Precipitation was completed in -80 °C freezer 30 min prior to 

centrifugation (12,000 rpm, 5 min) leaving the crude oligonucleotides as a solid white pellet. 

Crude oligonucleotides were evaporated to dryness and resuspended in autoclaved water (1.0 

mL) and the yields were determined by UV absorbance measurements at 260 nm. Crude RNA 

was purified by reverse-phase-ion pair HPLC on a Waters 2695 Alliance system equipped with a 

symmetry RP-C18 reverse-phase column (4.6 x 250 mm, 5 µm particle size) and gradient elution 

method 20−90% eluent B (20% acetonitrile in 0.1 M triethylammonium acetate, TEAA) in 
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eluent A (0.1 M TEAA). The HPLC flow rate was set at 1.0 mL/min, with run times of 27 min 

and with absorbance detection at 260 nm using a Waters 2489 UV/visible detector. Retention 

times (min) and peak areas (% area) were integrated with Empower II software (Waters) and 

used to confirm RNA purities. RNA-bioconjugation was conducted as described previously45,46 

for the generation of palmitamide and FITC-conjugated GRP75 RNA. 

3.6.3. Synthesis of Au-siRNA particles 

Equimolar concentrations (1.25 µM) of alkyl amino-linked antisense RNA and 

complementary sense RNA functionalized with or without palmitamide or FITC were combined 

in annealing buffer (10 mM Tris, pH 7.5-8.0, 50 mM NaCl, 1 mM EDTA, pH 7.5-8) in a 1.5 mL 

screw-cap Eppendorf tube in the absence and presence of hydrogen tetrachloroaurate (III) 

trihydrate (HAuCl4
.3H2O, 0.01 M). The sample was vortexed briefly and trisodium citrate was 

then added as a mild reducing agent to the mixture which was incubated on a standard heat block 

at 95 ± 1 °C for 5 min. The samples were then allowed to slowly cool to room temperature (22 

°C) before cooling at 4 °C for 24 h prior to sample analysis. In-situ nucleation and growth of Au 

nanoparticles were clearly observed by the formation of a red color solution due to the unique 

optical properties of Au nanoparticles.  

3.6.4. UV-Vis Spectroscopy 

Optical absorption spectra were acquired with a CARY 3E UV-Vis spectrophotometer. 

Absorption measurements were recorded between 210-310 nm for RNA samples, which were 

quantified according to the Beer-Lambert law. Similarly, the optical absorption spectra of Au-
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RNA nanoparticles were acquired between 220-750 nm with a CARY 3E/nanodrop UV-Vis 

spectrophotometer.  

3.6.5. Reverse Phase Ion Pairing High-Performance Liquid Chromatography (RP IP HPLC) 

The crude RNA samples were analyzed by Reverse Phase Ion Pairing High-Performance 

Liquid Chromatography (RP IP HPLC) to determine crude purities. Briefly, HPLC analyses 

(~0.1 OD) and purifications (1 OD) were performed on a Waters 2695 Alliance Separations 

Module. Crude RNA templates were dissolved in autoclaved water (1.0 mL) and injected into a 

Waters symmetry RP C18 reverse-phase column (4.6 x 250 mm, 5.0 µm particle size) heated at 

60 °C. HPLC analyses and purifications for RNA controls were conducted using a gradient of 

20−90% eluent B (20 % acetonitrile in 0.1 M triethylammonium acetate, TEAA) in eluent A (0.1 

M TEAA) with a flow rate of 1 mL/min, run time of 30 min and with absorbance detection at 

260 nm using a Waters 2489 UV/Visible detector. Similarly, RP IP HPLC for fatty acid 

conjugated RNAs were conducted using a gradient of 7-70% eluent C (100% acetonitrile) in 

eluent A (0.1 M triethylammonium acetate), with a run time 40 min and sample detection at 260 

nm. Retention times (min) and peak areas (% area) were integrated with Empower II software 

and used to confirm RNA purities >90% following sample purifications. 

3.6.6. Dynamic Light Scattering (DLS)  

A Malvern Zetasizer, Nano-ZS (Malvern Instruments, UK) employing a 173° scattering 

angle and a 4-mW incident He-Ne laser (633 nm) was used to measure the particle sizes 

(hydrodynamic diameter), size distributions, and zeta potentials of the control siRNA hybrids 

along with the Au-siRNA nanoparticles. Samples were measured in triplicates at 25 °C. All 
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samples were loaded into folded capillary cells (DTS 1070) equipped with electrodes on both 

sides to allow measurement of their zeta potentials and by extension, the stability and degree of 

aggregation. Particle suspensions with highly positive or highly negative zeta potentials are 

considered stable because the electrical repulsion between the particles tends to counter the van 

der Waals forces that would otherwise result in aggregation and precipitation. 

3.6.7. Transmission Electron Microscopy (TEM) 

TEM analyses of the linear control siRNA hybrids along with the Au-siRNA 

nanoparticles were performed with a JEOL 1200EX Transmission Electron Microscope (JEOL 

Ltd, Japan) at an accelerating voltage of 80 kV. A mixture of 1:1 volume ratio 1.0 % uranyl 

acetate and sample suspension were prepared and 10 µL of this solution was placed on a TEM 

carbon-film-coated copper grid of 300 mesh (Electron Microscopy Sciences Inc., Hatfield, PA). 

Each sample was allowed to sit for five minutes on the grid before wicking the excess liquid 

followed by storage for 12-24 h to allow the samples to dry. Images were taken with an SIA-L3C 

CCD camera (Scientific Instruments and Applications, Inc.) using the software Maxim DL5 

(Diffraction Limited, Ottawa, Canada). 

3.6.8. Serum Stability Assay 

siRNA samples were hybridized and formulated as previously described in annealing 

buffer (30 µM, 10 mM Tris, 50 mM NaCl, 1 mM EDTA, pH 7.1, 50 µL). An aliquot (50 µL, 30 

µM) was added to a 10% FBS solution (50 µL in phosphate buffer, pH 7.4). The mixtures were 

incubated at 37 °C and periodically (0-24 h) sample aliquots (15 µL) were removed and frozen at 

-80 ºC prior to analyses. Samples were thawed to room temperature (22 °C) and diluted with 30 
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% sucrose loading buffer and analyzed on a 24% denaturing PAGE for 2.5 h. The gel was then 

visualized with a Stains-All (Sigma-Aldrich™) solution.  

3.6.9. Time-Dependent Absorption and Emission Assays 

FITC-labeled siRNA samples with and without gold nanoparticles were hybridized and 

formulated as previously described in annealing buffer (5 µM, 10 mM Tris, 50 mM NaCl, 1 mM 

EDTA, pH 7.5–8.0, 75 µL) and allowed to slowly cool to room temperature (22 °C) before 

cooling at 4 °C for 24 h prior to sample analysis. The Spark multimode microplate reader 

equipped with Spark ControlTM Excel software was used to study the time-dependent absorption 

and emission spectra at 37 °C. The FITC-labeled siRNA controls and FITC-labeled Au-siRNA 

samples (75 µL, 5 µM) were placed in low volume microplate reader incubated at 37 °C. Time-

dependent absorption (350-800 nm) and emission (490-700 nm) scans were programmed and 

collected for 24 h. analyses.  

3.6.10. Cell Culture  

Prostate cancer cell line PC-3 (ATCC® CRL-1435™) was purchased from ATCC and 

cultured in RPMI-1640 complete growth medium supplemented with 10% (v/v) fetal bovine 

serum (FBS), 2.5 mM of L-glutamine, and 1% (v/v) penicillin/streptomycin (P/S) under 5% CO2 

at 37 °C in a humidified tissue culture incubator. Lower passages (between 6-12) were used for 

all experiments. 
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3.6.11. siRNA transfections, cell uptake, and viability in PC-3 cells 

PC-3 cells were grown in 24-well culture plates in RPM-1640 complete growth media 

until 60-70 % confluence as per the 3.6.10 protocol. Prior to transfections, the nonspecific and 

control siRNA hybrids (2.5 µL, 10 µM, in Opti-MEM, 137.5 µL) were mixed with the 

transfection reagent (TransIT-X2® Dynamic Delivery System, 9 µL, in Opti-MEM, 250 µL) and 

kept at 37 °C for 15 minutes according to the manufacturer’s recommendation. Both the linear 

siRNAs and nonspecific siRNA hybrids complexed with the commercial Tran-IT X2 transfection 

reagent in Opti-MEM was added to the cells at final concertation of 25 nM. RNA bioconjugates 

templated to Au such as the palmitamide or FITC-siRNA-Au samples were transfected directly, 

in the absence of an external transfection reagent, at a final concentration of 25 nM. The 

mixtures were incubated (15 min, 22 °C) then added to the PC-3 cell culture and incubated at 37 

°C with 5% CO2 over a three-day (72 h) period. To determine time-dependent cell uptake, FITC-

labeled siRNA samples with and without Au nanoparticles were transfected with and without the 

commercial transfection reagent along with their respective controls. Cell-uptake was determined 

using a Cell Insight CX5 High Content Screening (HCS) Platform (Thermo Fisher Scientific). 

Cells were visualized for 2, 4, and 30 h post-transfection. Images were analyzed using Thermo 

Scientific HCS Studio Cell Analysis software. Similarly, cell viability was performed in a 24-

well plate with PC-3 cells cultured in RPMI-1640 complete growth media and incubated with 

samples for 24 h at 37 °C. Briefly, after 24 h the supernatant was collected, and the remaining 

cells were removed using trypsin. Cell samples were pelleted and resuspended in 1% bovine 

serum albumin in phosphate-buffered saline (1 mL) and stained using Annexin-PI according to 

the manufacturer’s recommendation. Data was collected on an FC 500 flow cytometer (Beckman 

Coulter) and analyzed with Kaluza (Beckman Coulter) flow analysis software. 



 

 109 
 

3.6.12. Western Blot 

Total protein was isolated from the cell cultures following transfection (72 h). Protein 

lysates were prepared by lysing the cells in ice-cold RIPA buffer (G-Biosciences) supplemented 

with protease and phosphatase inhibitors (Millipore Sigma) which were diluted 1:10 v/v as per 

the manufacturer’s recommendations. Cell debris was removed by centrifugation at 16,000g at 4 

°C and protein concentrations were determined using a Pierce™ BCA kit (Thermo Fisher 

Scientific). A sample (20-35 mg) of the supernatant protein was mixed with LDS buffer and 

DTT, incubated at 70 °C for 10 min, and resolved on a 4-12% Bis-Tris PAGE gradient gel before 

being transferred to a PVDF membrane. Following the transfer, the membrane was blocked in 

5% skim milk for 1 h, washed and incubated at 4 °C overnight with a rabbit 1° monoclonal 

antibody against human GRP75 and -Actin (all purchased from Cell Signaling Technology) at a 

1:1000 dilution. The membrane was subsequently washed and incubated with an anti-rabbit 

HRP-conjugated 2° Ab (Cell Signaling Technology) for 1 h at room temperature at 1:2000 

dilution. The bands were visualized using a Signal Fire™ ECL reagent (Cell signaling 

Technology) on a Protein Simple Fluor Chem E imager. 
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Chapter 4: Conclusions, Contributions to Knowledge, and Future Work 

4.1 Conclusions and Contributions to Knowledge Made in this Thesis 

4.1.1 Investigating the role of siRNA bioconjugates and their nanoparticle formulations for 

improved biological activity   

 siRNA-based therapeutics have been developed over the course of the last two decades in 

precision medicine applications of difficult-to-treat diseases, including those that are genetically 

driven. The advancement of novel synthetic techniques has provided a diverse class of modified 

siRNAs with improved pharmacological properties resulting in more potent RNAi applications. 

However, their limited cell uptake has restricted their widespread therapeutic utility. To address 

these limitations, gene delivery systems have been engineered and optimized for siRNA delivery 

in vitro and in vivo. Among the more appealing are the non-viral based delivery methods that 

implicate bioconjugation strategies for the ligation of cell targeting/delivery vectors, 

polycationic/amphiphilic synthetic and biological polymers as well as biocompatible inorganic 

materials which enable siRNA functionalization or encapsulation for delivery applications.  

In our contributions for improving the structure-function properties of siRNAs, the design 

and development of higher-ordered RNA templates that can self-assemble into multifunctional 

siRNA nanostructures have served to expand the scope of bioactive siRNA candidates while 

enhancing their therapeutic potential in cancer gene therapy applications. This is because the 

self-assembled siRNA nanostructures may be used to effectively screen and silence multiple 

oncogenes leading to a synergistic knockdown and therapeutic effects. In this manner, the 

higher-order siRNA nanostructures served as important tools in the knockdown of oncogenic 

Glucose Regulated Proteins (GRPs), in various cancerous cells leading to potent anti-cancer 

responses. Building upon this research work, the main research objectives of this thesis revolve 
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around improving the utility of synthetic siRNAs in cancer gene therapy by either bioconjugation 

and/or formulation into multifunctional nanoparticles applicable for direct transfection and RNAi 

activity. In this manner, the novel siRNA constructs disclosed in this thesis are based on higher-

order siRNA bioconjugates bearing either fatty acids or fluorescein labels used for tracking cell 

uptake efficacy for RNAi activity in prostate cancer cells. Our contributions towards the 

development of a novel platform for functionalizing siRNAs onto Au surfaces were used for the 

generation of multifunctional Au-siRNA nanoparticles for theranostic (therapy+diagnostic) 

activity in prostate cancer cells. These contributions led to target-specific silencing of the GRPs, 

which impacted key roles in the development, progression, and spread of cancer. Thus, novel 

methods for the generation of higher-order siRNA motifs and their bioconjugation with 

functional probes may serve to improve cellular uptake for more potent RNAi activity in cancer 

gene therapy applications (Figure 4.1). 

 

 

Figure 4.1. Next-generation siRNA motifs for cancer gene therapy applications. Figure Drawn 

using Chemdraw version 19.1 software. 

 

4.1.2 Development of Higher Order siRNA Hybrids and their Bioconjugates for RNAi Activity in 

Cancer 
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 Chapter 2 discussed our specific efforts on the development of an effective technique for 

the cellular delivery of our higher-order siRNA structures, including those adopting V-, and Y- 

shape siRNA for knockdown of GPRs, upregulated in various cancers. More specifically, in this 

chapter, a bioconjugation approach was developed for the incorporation of a series of saturated 

and unsaturated fatty acids within linear, V- and Y-shape siRNAs to improve cellular uptake and 

knockdown efficacy of the oncogenic GRPs in a model prostate cancer (PC-3) cell line (Figure 

4.2). These fatty-acid conjugated siRNA motifs provided valuable insights into the requisite 

amphiphilicity for cell uptake activity. The solid-phase RNA bio-conjugation approach reported 

in this study provided an important entry point for the incorporation of various hydrophobic and 

amphiphilic functional groups onto higher-order, multifunctional siRNA constructs, A small set 

of linear saturated and unsaturated fatty acids (C12 to C18 carbon chain lengths) was 

successfully conjugated to the RNA templates with both antisense and sense sequences. The 

amphiphilic siRNA-fatty acid motifs incorporating a fluorescent (FITC) label for tracking cell 

uptake indicated initial (6 h) transfection with little observed cellular siRNA left following 24 h 

incubation. The modest cell uptake effects translated into a moderate GRP knockdown (~30-

40%) within PC-3 cells, albeit without the use of a commercial transfection reagent (Figure 2.7). 

To better understand the observed moderate cell uptake and GRP knockdown effects of the fatty 

acid labeled siRNAs, structural characterization by DLS and TEM revealed very large, 

aggregated particles (Figure 2.6 and Table 2.3), which in-turn likely contributed to the 

moderate RNAi effects in the PC-3 cell line. Taken together, these results confirm the ability to 

modulate siRNA structure-function properties via conjugation of bio-active probes (e.g. fatty 

acids and fluorophores). However, effective siRNA activity is dependent on a variety of factors 

requiring optimization of siRNA sequence, and structure composition as well as the delivery 
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method for generating suitable formulations capable of effective siRNA delivery and release for 

silencing of important oncogene targets in cancer gene therapy applications. 

 

Figure 4.2. Fatty acid conjugated siRNAs with a fluorescence probe (fluorescein) for tracking 
cell uptake efficiency in PC-3 prostate cancer cells. Figure drawn using Chemdraw version 19.1 
software. 
 
 
4.1.3 Development of Bifunctional Au-templated RNA nanoparticle formulation for siRNA activity in 

PCa Cells 

 A major limitation of the self-assembled siRNA structures and the bioconjugates 

described in chapter 2, was based on their limited cell uptake for silencing activity in PC-3 cells. 

Structural studies by DLS and TEM revealed that large, charged aggregates likely contributed to 

poor cell uptake which diminished RNAi activity. Thus, modification strategies for fine-tuning 

the structure-function properties of siRNAs must optimize the requisite size and surface charge 

density of particles that may be applicable to cell uptake for RNAi potency. Chapter 3 of this 

thesis focused on the design and development of bifunctional RNA nanoparticles based on a Au 

formulation, which was selected to improve siRNA structure-function properties for enhanced 
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cell-uptake and RNAi activity in PC-3 cells. In this application (Figure 4.3), a simple method for 

templating amino-functionalized RNA onto Au surfaces and their self-assembly into small, 

discrete siRNA nanoparticles was established and also extended to our bioconjugation 

approaches for the incorporation of palmitamide and fluorescein. In this newly developed 

synthetic method (Scheme 3.1), a novel bottom-up approach for nucleating synthetic double-

stranded (ds) RNA in which the antisense (A1) strand bearing a reactive alkylamino linker was 

used to template RNA onto the surface of reduced Au particles. The complementary sense (S1) 

strand was functionalized with and without a palmitamide (C16) fatty acid group or fluorescein 

isothiocyanate (FITC) as fluorescent (FL) reporter to generate the bifunctional Au-templated 

siRNA particles. It was observed that the Au-functionalized RNA particles with and without the 

fatty acid or fluorophore appendages were found to be stable under reducing conditions 

according to UV-Vis spectroscopy (Figure 3.4). These samples also produced primarily small 

(~10-40 nm), well-defined spherical shaped self-assembled nanoparticles (Figure 3.5), which 

were expected to be amenable to cell biology. The introduction of FITC within the Au-

functionalized RNA particles produced a bifunctional probe, in which FITC fluorescence 

emission (λexc: 494 nm, λem: 522 nm) facilitated cell uptake detection, in a time-dependent 

manner (Figure 3.6, A and B). Moreover, western blot data showed knockdown of GRP75, 

which led to detectable levels of cell death in PC-3 cells treated with the Au-siRNA formulation 

in the absence of a transfection vector. Thus, the methodology shows the formulation of stable, 

small, and discrete Au-functionalized RNA nanoparticles, which may prove to be valuable 

bifunctional probes in the theranostic study of cancer cells. 
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Figure 4.3. Structural representation of the multifunctional Au-siRNA nanoparticles bearing 
either a palmitamide or fluorescein group for cell biology in PC-3 prostate cancer cells. Figure 
drawn using Chemdraw version 19.1 software. 
 
4.2. Ongoing and Future Work 

 While the results in this thesis highlight important accomplishments in the design and 

development of higher-order siRNA bioconjugates and their nanoparticle formulations for 

enhancing cell uptake and silencing of GRP expression for anti-cancer activity in prostate cancer 

cells, there is still the need for further refinement and optimization. Among the areas that remain 

underexplored and underdeveloped in our research work, are the cell-targeting ligands, that 

provide specificity and targetability, for minimizing off-target gene silencing effects while 

improving the efficacy of our cancer-targeted gene therapy approach. The ongoing and future 

work is aimed at the incorporation of polyarginine derived cell-targeting peptides that own the 

ability to bind and release siRNAs selectively within targeted cell lines. Our previous work 

indicated that the peptides were able to condense and release siRNAs, however, with limited cell 
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uptake efficacy due to the large, aggregated particles observed. In order to address this 

limitation, we are working on developing Au-siRNA formulations that contain cell-targeting 

peptides that own the ability to bind selectively onto the PSMA receptor localized on the surface 

of prostate cancer cells (Figure 4.4). In this manner, we anticipate that the Au-RNA formulation 

functionalized with the PSMA specific peptide may further improve the targetability, stability, 

and potency of the formulation for the requisite RNAi response in prostate cancer cells that may 

ultimately lead to the desired cancer-targeted gene therapy applications.  

 

Figure 4.4. Proposed PSMA-targeting Au-siRNA formulation for targeted gene therapy in 
prostate cancer cells. Figure drawn using Chemdraw version 19.1 software. 
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Figure A1 HPLC chromatogram of amino-functionalized GRP75 A1 RNA 
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Figure A2  HPLC chromatogram of amino-functionalized GRP75 S1 RNA 
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Figure A3  HPLC chromatogram of amino-functionalized NS A1 RNA 
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Figure A4 HPLC chromatogram of amino-functionalized NS S1 RNA 
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Figure A5 HPLC chromatogram of C16 conjugated GRP75 S1 RNA 
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