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Abstract 

Dogan et al.[1], investigated the causes of ferroelectricity in doped hafnia using ab initio 

methods. Similarly, we investigated the stability of Al doped hafnia using quantum mechanical 

methods. 

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. 

Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in 

different space groups. The temperature at which the tetragonal phase is induced is 2000 K and 

cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The 

average dielectric constants are highest for the cubic and tetragonal phases. In order to force a 

high temperature phase to be stable in Hafnia, one would need to introduce cation dopants. 

The polar orthorhombic phase is well known to exhibit ferroelectricity. Since inducing this phase 

with about 40 GPa it is more effective to induce a ferroelectric phase in Hafnia via doping 

methods. Doping methods for Hafnia are well established in [1] and demonstrated for Si, Ge, La 

and other elements. The rhombohedral phase is of interest and investigated first in [35]. Since 

ferroelectricity in the rhombohedral phase is difficult to stabilize, dopants are introduced 

analogously to the orthorhombic case. In this work, we doped the monoclinic, tetragonal, 

orthorhombic and rhombohedral phase of Hafnia with Al to investigate the effect of dopants on 

ferroelectricity and relevant EXAFS data was also produced.  

Using plane wave density functional theory, the tetragonal, orthorhombic, and trigonal phases of 

aluminum doped hafnia were geometrically optimized. The resulting 3 percent, 6 percent, and 7 
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percent Al doped hafnia structures were used for generating expected EXAFS spectra for 

experimental data analysis and validation. Specifically, these DFT calculated structures are going 

to be used in the non-linear least square EXAFS fits of the thin films HfAlO2. 

  

Keywords: Density functional theory, ferroelectricity, doped hafnia 
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Introduction 

Section I: Introduction to Quantum Mechanics 

Quantum mechanics necessarily developed from the failures of classical physics. Since density 

functional theory is a quantum mechanical method, we will first make some remarks about 

quantum mechanics. 

Niels Bohr investigated the quantum nature of the electron. He found that electrons follow 

specified paths called orbitals and on these orbitals electrons do not radiate energy. Further, he 

found 

 𝐸 =
−13.6𝑒𝑉

𝑛2 (1) 

and these energies are negative since these are bound states of an electron with nucleus with 

reference to the ground energy state when they are infinitely apart.  

Further, he proposed that electrons and move between orbitals by absorbing or emitting a quanta 

of energy. [2] 

Δ𝐸 = −13.6 (
1

𝑛1
2 −

1

𝑛2
2)(2) 

Planck reported that blackbody radiation could be explained nicely only if the radiation energies 

were discrete. Both Planck and Bohr were looking at the quantum nature of electrons from 

different perspectives. 
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The wave-particle duality of electrons is also an important development in quantum mechanics. 

De Brogile pioneered the development that an electron is both a wave and a particle. The 

frequency is directly proportional to the particle's kinetic energy: 

𝑝 =
ℎ

λ
 (3) and 𝐸 =  ℎ𝑣.(4) 

𝑝 is momentum, ℎ is Planck's constant, λ is the wavelength, 𝑣 is the frequency.  

 

Heisenberg is well known for the uncertainty principle he developed. If one measures the 

position of an electron one cannot know the momentum and vice versa. This means that when 

dealing with quantum mechanical methods, such as DFT, all calculations are really probabilities. 

For example, electron positions are represented as electron densities that are probabilities of 

finding electrons in a finite volume element. Fortunately, during the quantum mechanical 

calculations, the uncertainty principle is not involved since the system is time independent, and 

errors of the methods are far greater than the uncertainly involved. [2] 

Schrödinger(name needs to be adjusted), also engendered the rise of quantum mechanics. He 

developed a wave equation: 

�̂�ψ = 𝐸ψ.(5) 

Where �̂� is the Hamiltonian operator, ψ is the wave function and 𝐸 is the system’s energy.  

It is helpful to look at the Schrodinger equation from the wave-particle duality proposed by De 

Brogile.[3] 

Looking at the particle description: 
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Since 𝐸 =
1

2
𝑚𝑣2 + 𝑉(6) 

then 𝑣 = (
2(𝐸−𝑉)

𝑚
)

1

2
(7) 

and 𝑝 = 𝑚𝑣 = (2𝑚(𝐸 − 𝑉))
1

2.(8) 

Now looking at the wave description: 

From 
𝑑2ψ

𝑑𝑥2
= −(

2π

λ
)
2

(9) 

rearranging gives (
2π

λ
)
2

=
−1

ψ
𝑑2ψ𝑑𝑥2(10) 

or 
1

λ
= (

−1

4π2ψ

𝑑2ψ

𝑑𝑥2)

1

2
(11) 

Then, using de Broglie's relation(3): 

𝑝 = ℎ (
1

λ
) 

 

2𝑚(𝐸 − 𝑉)
1
2 = ℎ (

−1

4π2ψ

𝑑2ψ

𝑑𝑥2
)

1
2

(12) 

 

2𝑚(𝐸 − 𝑉) = (
−ℎ2

4π2ψ

𝑑2ψ

𝑑𝑥2
) (13) 
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(𝐸 − 𝑉)ψ =
−ℎ2

8π2𝑚

𝑑2ψ

𝑑𝑥2
(14) 

 

−ℎ2

8π2𝑚

𝑑2

𝑑𝑥2
ψ + 𝑉ψ = 𝐸(15) 

 

Therefore, 

 

(
−ℎ2

8π2𝑚

𝑑2

𝑑𝑥2 + 𝑉)ψ = 𝐸(16) 

 

Thus, using de Broglie’s relation(3) wave-particle duality can be used to derive the Schrodinger 

equation. 

 

The wave function describes the quantum state o a set of particles in an isolated system. 

An operator does a mathematical operation on a variable, e.g. a derivative 
𝑑

𝑑𝑥
. 

It is important to note that any observable in quantum mechanics is represented by an operator. 

Operators can also be non-commutative meaning they cannot be measured simultaneously or 

known precisely. Consider the example of position and linear momentum in the x direction.  

If two operators �̂� and �̂� commute then: 
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[�̂�, �̂�] = 0 

 

Where [�̂�, �̂�] = 𝐴�̂̂� − 𝐵�̂̂�. [4] 

 

A Hermitian operator is linear operator �̂� that obeys: 

 

∫𝑓𝑚
∗ �̂�𝑓𝑛𝑑τ = ∫𝑓𝑛(�̂�𝑓𝑚)

∗
𝑑 

 

A  linear operator is an operator �̂� that obeys the following properties: 

 

1).  ̂𝐴(𝑓(𝑥)  +  𝑔(𝑥))  =   ̂𝐴𝑓(𝑥) +  ̂𝐴𝑔(𝑥) 

 

2).  ̂𝐴(𝑐𝑓(𝑥)) =  𝑐 ̂𝐴𝑓(𝑥) 

 

A unitary operator is an operator �̂� for which Û = U𝑡 

There are several important postulates of quantum mechanics: 

1). The state of the system is given by the wave function: 
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ψ(𝑥, 𝑦, 𝑧) 

2). All observables are represented by operators commuting: 

[ ̂𝑥,  𝑝] = 𝑖ℏ 

3). The mean value of an observable is the expectation value: 

⟨Ω⟩ =
∫ψ∗ Ωψ𝑑𝑟

∫ψ∗ ψ𝑑𝑟
 

A plane wave is a wave function that propagates perpendicularly to wave fronts with a constant 

frequency. 

 

A standing wave is a wave function which does not propagate but vibrates up and down in place. 

 

In an effort to calculate various electronic properties, one must consider the interactions 

involving electrons in the system. 

This is intrinsically difficult since the interactions between electrons are too complex to consider 

numerically, and this is termed the many-body problem.  

Early efforts to mitigate this problem were investigated by Hartree. The Hartree method utilized 

a mean electron field to calculate electronic properties of complex systems. 

The Hartree method had two main failures: 

 

1). It does not follow the antisymmetry principle and Pauli's exclusion principle. 
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2). It does not count the exchange and correlation energies coming from the n- electron nature of 

actual systems. 

 

The Hartree method was then refined to become the Hartree-Fock method. 

The Hartree-Fock method improved upon the Hartree method in several important ways. First, 

the wave function is expressed in the form of a Slater determinant, which makes the wave 

function anti-symmetric, thus satisfying a previous approximation. 

A Slater determinant is a mathematical expression of the wave function using determinants that 

satisfies the antisymmetry principle. Therefore the use of a Slater determinant also satisfies the 

Pauli exclusion principle. 

 

Since electrons are interacting, expressing the wave function as a single Slater determinant is 

also an approximation, which is subject to a systematic improvement to the exact function. The 

variational principle is used in this regard. 

 

In quantum mechanics, there is one ground-state energy and any energy lower than this cannot 

exist as determined through the variational principle.  
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Therefore, if one minimizes the system energy with respect to the wave function, the energy 

must end at the ground-state energy.  

 

The variational principle can be written as: 

 

0 = δ (∫Ψ�̂�Ψ𝑑𝑟). 

Section II: Density Functional Theory 

 

The Hartree-Fock method adopts a self-consistent procedure: 

 

1). Choose a proper set of n wave functions, such as of hydrogen for an atomic calculation and a 

linear combination of atomic orbitals for solids.  

 

2). Calculate the electron density: ρ(𝑟′) 

 

3). Calculate the three energy terms of �̂� for 𝑛 electrons. 
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4). Insert these values into the wave equations and solve to have a set of 𝐸𝑖 and a new set of 

wave functions. 

 

5). Repeat the above process until self-consistency is reached and input wavefunctions and 

output wavefunctions become the same in a certain range of error. 

 

Density Functional Theory calculations have been used to provide insight on the ferroelectric 

effects of doped Hafnia. Density Functional Theory is widely used because it greatly simplifies 

the n-electron problem. Instead of treating the electrons as an electron density. An electron 

density is the number of electrons per unit volume at a given point. In DFT, the electron density 

gives all of the information in an n-electron system, in this sense it plays a similar role to the 

wave function. Assuming the electrons do not interact with one another, one can write the 

electron density as: 

ρ(𝑟) = ∑|ϕ𝑖(𝑟)|
2

𝑖

= 2∑|ϕ𝑖(𝑟)|
2

𝑜𝑐𝑐

𝑖

. (1) 

Where ϕ𝑖 are the KS orbitals. KS orbitals are solutions to the KS equations: 

 

(
−ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝑟))ϕ𝑖(𝑟) = ϵ𝑖ϕ𝑖(𝑟). (2) 

Here, ϵ1 is the orbital energy of the corresponding Kohn-Sham orbital, ϕ𝑖, and the electron 

density is given above as (1). 
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Another important feature of DFT is the Hohenberg-Kohn theorems, in which the energies and 

potentials of the system are postulated to be electron density functionals, where a functional is a 

function of a function. 

 

The first Hohenberg-Kohn theorem states that there exists a unique external potential, 𝑈𝑒𝑥𝑡 

determined solely by the ground state electron density. 

One should note that the internal potential energy is independent of the system. 

 

The reasoning behind the first theorem goes as follows: 

 

1). In a system at the ground state, electron density alone can define an external potential and 

vice versa. 

 

2). Internal energy, which is density dependent is a universal functional 𝐹[ρ(𝑟)] and is the same 

for all systems whereas the external potential depends on the kind of nuclei involved. 

 

3). Hamiltonians must differ by the external potential 
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4). Electron density defines external potential for the Hamiltonian, wave function and all ground 

state properties. 

 

We also note that𝐹[ρ(𝑟)] = ⟨ψ|�̂� + 𝑉𝑒−𝑒|ψ⟩ and the expectation value of any operator �̂� is a 

unique functional of the density: ⟨�̂�⟩ = 𝑂𝑛[ρ] = ⟨ψ𝑛[ρ]|�̂�|ψ𝑛[ρ]⟩. 

 

The second Hohenberg-Kohn theorem demonstrates that there is a way to search to the ground 

state via the variational principle: 

𝐸𝑟[ρ
′(𝑟)] = 𝐹[ρ(𝑟)] + 𝐸𝑒𝑥𝑡[ρ(𝑟)] ≥ 𝐸𝑔𝑠. 

 

Alternatively: 

𝐸𝑟[ρ
′(𝑟)] = 𝐹[ρ(𝑟)] + ∫ (𝑟)ρ′(𝑟)𝑑𝑟

𝑣𝑒𝑥𝑡

≥ 𝐸0. 

 

It is important to note that the functional delivers the ground state energy of the system if and 

only if the input density is a true ground state density.  

A typical DFT scheme specifically for VASP is detailed in figure  
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 In order to discuss PAW potentials and other methods used in this work, we must briefly 

discuss pseudopotentials. A pseudopotential mimics the behavior of an actual potential. In this 

frame, the electrons are divided into two groups in terms of contributions, which freezes the 

nucleus and core electrons together, pseudizing the valence wave functions. Since we are 

primarily concerned with the valence electrons, these approximations do not hinder our 

calculations. The core electrons in an atomic system have minimal contribution to bonding when 

isolated atoms are brought together to form a molecule or crystal. In contrast, the valence 

electrons have stronger contributions to bonding, ionization, conduction, and band formation. In 

the frozen-core approximation, which is a computational approach, the core electrons are 

Figure 1. General flow of VASP 
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removed from the picture and we focus on valence electrons. The wave function must be 

orthogonal and unique, thus obeying Pauli’s exclusion principle. Thus, when the wave function 

for a valence electron passes by a highly localized core region, it oscillates rapidly and is 

orthogonal to the core states. It is inherently difficult to classify these curves and so we use the 

frozen-core approximation. In this way the system is said to be pseudized. The steps involving 

pseudization is the following: 1). Select an atom as the reference state and the formulated 

pseudopotential can have both transferable and additive properties in application to different 

systems. 2). Calculate the exact all electron potential, wave function, and energy by the DFT 

calculation with the use of spherical symmetry, the core electrons are frozen. 3). Choose 𝑟𝑐 to 

make the core (𝑟 < 𝑟𝑐) 4). When 𝑟 = 𝑟𝑐, the first and second derivatives of the wave functions 

are equal. 5). When 𝑟 > 𝑟𝑐 the pseudo and all electron wave functions are exactly the same. 6). 

The eigenvalues of the smooth pseudo and original wave functions are the same. 7). A 

pseudopotential is generated from the pseudo wave function and is typically parametrized in 

spherical Bessel or Gaussian functions. It is important to note that the energies from these 

pseudopotentials are not the same as ground state energies.  

There are many different types of pseudopotentials. We will discuss three basic types: norm-

conserving pseudopotentials, ultrasoft pseudopotentials, and projected-augmented wave 

potentials. In the norm-conserving pseudopotentials, the pseudo and all electron charge densities 

within the core are equal. (include relevant equations) For ultrasoft pseudopotentials we 

disregard the norm-conserving condition and make the wave function look like an upside-down 

bowl. Ultrasoft pseudopotentials only give valence charge densities and not total charge 

densities. Projected augmented wave potentials  
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Section III: Introduction to EXAFS 

 

When a system is disturbed, it can exist as a superposition of different possibilities. When the 

system is measured in some way, the wave function collapses and falls on the possibilities. Since 

the system exists as a superposition of possibilities with each having its own probability, how do 

we know which state might be the final state? According to Fermis Golden Rule[16], the 

probability of each possibility coming to pass depends on the similarity of the proposed final 

state to the indeterminate state prior to the measurement, the more similar it is the more likely it 

is.[15] 

 

EXAFS is a commonly used technique to understand and characterize the structure of a 

material via its electronic properties.[13] EXAFS stands for Extended X-Ray Absorption Fine 

Structure. EXAFS is a specific region which comes from the XAS, where XAS stands for X-Ray 

Absorption Spectrum. The other portion of the spectrum from XAS is known as XANES, which 

stands for X-Ray Absorption Near Edge Structure. In this thesis, we will focus on understanding 

EXAFS since it was generated as a part of our results. The absorption coefficient will be the 

central player in understanding how EXAFS works. EXAFS spectroscopy refers to the 

measurement of the X-ray absorption coefficient μ as a function of photon energy 𝐸 above the 

threshold of an absorption edge.[13] The absorption coefficient, given as μ is calculated through 

μ = 𝑙𝑛 (
𝐼0

𝐼
), where𝐼0 and 𝐼 are the intensities of the incident and transmitted beams, respectively. 
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Like other forms of light, the intensity of an x-ray is proportional to the number of photons. X-

rays are traditionally generated by deceleration of fast moving electrons at a target material. Also 

if an X-ray tube contains accelerating electrons with an excitation voltage V and goes through a 

metal target, the maximum frequency of X-rays emitted by Bremsstrahlung is given by the 

Duane-Hunt law[13]: 

𝑉𝑚𝑎𝑥 =
𝑒𝑉

ℎ
, which corresponds to a minimum wavelength: λ𝑚𝑖𝑛 =

ℎ𝑐

𝑒𝑉
.  λ𝑚𝑖𝑛 represents the 

shortest wavelength possible for an applied accelerating voltage 𝑉 since not all the electrons lose 

energy through this method. Bremsstrahlung is the electromagnetic radiation produced from 

deacceleration of a charged particle. Magnetobremsstrahlung describes this interaction when 

magnetic fields are also involved. In 1905, Einstein’s paper on the photoelectric effect as 

published, thus enabling the description of an ejection of an electron from an atom by the 

absorption of a photon. One should note that when electrons are knocked out of the inner atomic 

orbital a vacancy is created in the core shell. Electrons in the high energy levels will cascade 

down and characteristic lines are formed. The wavelength of characteristic lines decreases with 

increasing atomic number of the material. The maximum kinetic energy of an emitted 

photoelectron from a material is given by:[13] 

𝐾𝐸𝑚𝑎𝑥 =
1

2
𝑚𝑣2 = 𝐸 − 𝐸0, where 𝐸 =  ℎ𝑣 is the quantized energy of the incident photons and 

𝐸0 = 𝑒ϕ is the threshold energy where ϕ is the work function. In other words, 𝐸0 is the 

minimum energy required to eject an electron from a particular atomic or molecular orbital. 
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] 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pre-edge, Edge and EXAFS[13] 

 

 

 

Continuous spectrum X-ray radiation are produced when the kinetic energy of charged particles 

is converted to radiation. One important source of continuous spectrum lines is from synchrotron 

radiation. Synchrotron radiation is emitted when charged particles such as electrons or positrons 

travel with a speed approaching that of light in curved paths in a magnetic field.[13] There are 

several advantages to synchrotron radiation which consist of: 1). High intensity; 2). Tunability 

over a wide energy range; 3). High collimation; 4). Plane-polarization; 5). Precisely pulsed time 
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structure. X- rays can be characterized as hard or soft. For hard X-rays, the spectrum spans from 

a few KeV to about 100 KeV. Soft X-rays cover the range from hundreds of eV to a few KeV. 

There are different types of transitions that can occur when photons interact with electrons. An 

electronic transition is when electrons move from one energy level to another. [13] A dipole 

transition occurs when electrons are moved from one energy level to another. The probability 

that this transition occurs is called the dipole transition probability.  

ℎ𝑣 =  𝐸𝑓 − 𝐸𝑖 ,where ℎ𝑣 is one quantum of electromagnetic raditation, 𝐸𝑓 is the energy of the 

final orbital states and 𝐸𝑖 is the energy of the initial states. The dipole transition probability is 

given as: 

X= 𝑒 < 𝑛’𝑙’𝑚’𝑠’|𝑥|𝑛𝑙𝑚𝑠 > 

𝑌 = 𝑒 < 𝑛’𝑙’𝑚’𝑠’|𝑦|𝑛𝑙𝑚𝑠 >  

Z= 𝑒 < 𝑛’𝑙’𝑚’𝑠’|𝑧|𝑛𝑙𝑚𝑠   > 

It is important to note that in a dipole transition, the charge distributions in the initial and final 

states are different. A dipole transition can be coupled with electromagnetic radiation and put or 

take energy from an electromagnetic field. Resonance transitions are another important class of 

transitions. A resonance transition is a transition in which resonant absorption occurs. Resonant 

absorption is the absorption of electromagnetic energy at a frequency such that the photon energy 

is equal to the quantum excitation energy of the absorbing system [13]. Characteristic x-rays are 

emitted when outer-shell electrons fill a vacancy in the inner shell, releasing x-rays that are 

characteristic to each element[13]. Characteristic x-rays are important because they are used to 

identify specific elements from which they are emitted. The frequencies of characteristic x-ray 

lines follow Moseley’s law: 
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𝐾α𝑣 = 𝑘2(𝑍 − σ)2, [13] 

lines are related to the atomic number 𝑍. Moseley performed an empirical fit on the x-ray 

frequencies and found the relation above(number). Further, the results can be explained by the 

Bohr model. The Bohr model is an atomic model that proposes a small nucleus in the center of 

an atom surrounded by concentric electron shells where electrons obey the Aufbau principle. The 

Aufbau principle describes the method in which electrons fill shells and subshells.  

If an electron from an occupied level goes to an unoccupied level by the absorption of a photon, 

an absorption spectrum is created. An absorption edge which is a spike in the absorption 

spectrum, comes from electrons that are excited from core to continuum. Further, a threshold 

energy is the minimum photon energy that is required to eject an electron out of a state: 

𝐸0 = ℎ𝑣0, which is also the absolute binding energy of the electron. 

X -rays interacting with matter lose intensity as photons travel through the matter. 

𝑑𝐼 =  −μ𝐼𝑑𝑥 is the governing equation of the intensity, 𝐼, where 𝑑𝐼 is the change in intensity, μ 

is the linear absorption coefficient and 𝑑𝑥 is the change in thickness. If we integrate 

equation(number) we obtain: 

𝐼

𝐼0
=  𝑒−μ where 𝐼 and 𝐼0 are the incident and transmitted x-ray intensities.  

𝛍 in most cases can be approximated as: 
ρ 𝑍4

𝐴𝐸3 where ρ is the sample density, 𝑍 is the atomic 

number, 𝐴 is the atomic mass and x-ray energy is 𝐸.[13] 
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As photon energy increases, the absorption coefficient decreases, and intensity decreases until a 

critical wavelength is reached where the absorption coefficient increases substantially. The 

increase corresponds to the ejection of a core electron and results in the absorption edge.   

 

When X-rays interact with matter there are several types of interactions that might occur. X-ray 

absorption events are of interest to us. These events occur when a photon incident on a sample 

interacts with electrons and gives up all its energy, which causes the photon to disappear in the 

process. Electrons transition from lower atomic energy levels go to higher levels which in turn 

leave vacancies in the lower levels which are filled by electrons moving down to the lower 

energy level. The transition from a higher energy level to a lower energy level creates a release 

of energy usually in the form of radiation, but also via the Auger process. There are also 

scattering events that can occur when X-rays interact with matter. Elastic scattering events occur 

when a photon interacts with the electrons of a sample and a photon of the same frequency, but 

different direction is emitted. In an inelastic scattering situation, the frequency of the emitted 

photon and the incident photons is not the same, and in general the emitted photon has lower 

frequency. 

The X-ray matter interaction is described by the total absorption coefficient μ: 

μ =  τ +  σ, where τ is the true absorption coefficient and σ is the scattering coefficient. The true 

absorption coefficient relates to the photoelectric effect when a core electron is ejected and 

carries excess kinetic energy. The scattering coefficient consists of the x-ray photons that can be 

deflected from the original direction they travel, with or without a loss of energy and with or 

without a collision. The scattering coefficient is usually negligible.  
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One of the interactions of photons and electrons with matter is X-ray photoionization in which a 

photoelectron is ejected from the core level after absorbing a photon. There are many different 

mechanisms of excited atom relaxation, these are fluorescence X-rays, Auger electrons and 

secondary electrons. By relaxation mechanism, we mean a method for de-excitation of the atom.  

In x- ray fluorescence the inner shell vacancy is filled by outer shell electrons. This process is a 

radiative process and the energy of fluorescence is the difference in energy between the two 

shells. For example, an L shell electron can fall into the K level causing a 𝐾α fluorescence line. 

Next, the Auger effect is an important relaxation mechanism for an excited atom. The Auger 

effect is a radiation less process in which an electron drops from a higher shell to a lower shell 

and simultaneously ejects an electron from the same shell. This process is also referred to as 

autoionization. Auger transitions occur with a high probability and emit two or more Auger 

electrons simultaneously. An Auger electron is the electron that is ejected from the shell during 

this process. A vacancy cascade can occur whereby continuous ionization from additional Auger 

processes happens. It is important to note that the vacancy cascade can only occur with core 

electrons. Further, a Coster-Kronig transition, which has a large transition probability, is a 

special case of an Auger process in which the vacancy is filled by an electron from a higher 

subshell of the same shell. If the Auger electron belongs to the same shell, then this is called a 

super Coster-Kronig transition. The selection rules for the Auger transition is that the initial and 

final system must have the same symmetry and parity. It is important to note that a selection rule 

is a formal constraint that governs the transition from one quantum state to another.  

Next, a secondary electron process can occur. This process is nonradiative and x-ray photons 

eject electrons when they leave the atom. The primary photoelectrons are Auger electrons.  
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EXAFS is essentially the region beyond the absorption edge in which oscillatory behavior 

occurs. In order to utilize EXAFS properly, the atoms investigated must not be isolated, since 

EXAFS depends on the neighboring atoms. The utilization of synchrotron radiation pioneered 

EXAFS as an experimental tool, which is especially useful when other methods are difficult or 

impossible to conduct, such as diffraction. The pre-edge region is useful because it contains 

information regarding bonding and electronic configuration. The absorption edge region contains 

information about charge. Transmission is one of the experimental modes of EXAFS 

measurements, but there are many others. In the transmission mode, EXAFS only includes X-ray 

measurements but for other modes electrons might be involved. Some of these other modes are: 

1). SEXAFS, which is focused on Auger electrons, 2). EELS, which is electron energy loss 

spectroscopy.  

 

 

EXAFS results because of the scattering process of an outgoing photoelectron by the 

neighboring atoms. The ejected electron behaves like a spherical wave, and we have a resulting 

outgoing and incoming interference from this process, since a wave is produced from the 

backscattering of neighboring atoms. Interference, which results from the superposition of two 

waves, can be coherence or destructive. The interference gives rise to the oscillatory behavior in 

the EXAFS region of the absorption spectrum. As a simple example in understanding EXAFS, 

consider a monatomic gas, like Argon. In this case, there are no neighboring atoms so the 

mathematics governing EXAFS is simplified: 
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λ =
2π

𝑘
 and 𝐾𝐸 =

𝑝2

2𝑚
= 

ℏ2𝑘2

2𝑚
 and 

 𝑘2 =
(𝐸−𝐸0)(2𝑚)

ℏ2
,  

so 𝑘 = (
(𝐸−𝐸0)(2𝑚)

ℏ2 )
1

2.  

The Debye-Waller factor describes the attenuation of x-ray scattering in thermal motion. 

Structural and chemical information can be obtained from the Debye-Waller factor.  

Beer’s law: 

𝐼 = 𝐼0𝑒
−𝜇𝑡, where 𝐼 and 𝐼0 are intensities, μ is the absorption coefficient and 𝑡 is the sample 

thickness.  We also note that μ is proportional to 
𝐼

𝐼0
. 

 

χ(𝐸) =
μ(𝐸) − μ0(𝐸)

μ0(𝐸)
 

where χ(𝐸) is the fine-structure function, μ(𝐸) is the measured absorption coefficient, μ0(𝐸) is a 

background function which is smooth and represents the absorption of an isolated atom. 
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Section IV: Introduction to Ferroelectric Materials 

Ferroelectricity is important to realize in materials because it means the material will be useful in 

memory applications as CMOS technology and the like. Ferroelectricity is the characteristic of 

materials that have a spontaneous electric polarization that can be reversed by an application of 

an external electric field.[5] In order to discuss ferroelectricity, one must discuss polarization of 

materials. Polarization is the dipole moment per unit volume in a material. A dielectric is an 

insulator that exhibits electric polarization. When dielectrics are placed in an electric field, 

current flows in them because they have no loosely bound electrons that may drift through the 

material and thus electric polarization occurs. The positive charges within the dielectric are 

slightly displaced in the direction of the electric field, and the negative charges are displaced 

slightly in the direction opposite of the electric field. In materials there are several polarization 

materials: electronic, ionic, high-frequency dipolar, low-frequency dipolar, interfacial-space 

charge at electrodes and interfacial-space charge at heterogeneities such as grain boundaries. For 

ferroelectric materials, the high-frequency dipolar mechanism dominates.   

Hafnia is well known for its high dielectric constant which is usually about 40 or 50. Hafnia is 

known as a refractory material, which is a material that is thermally insulating known to 

withstand high temperature without degrading. A linear dielectric is a material in which the 

dielectric polarization is linearly related to the electric field and the dielectric constant is not 

dependent on the electric field. Dielectric strength is the maximum electric field that can be 

maintained between two conductor plates without causing breakdown. It is well known that 

dielectric properties can only be found with certain crystal symmetries. For example, a 
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piezoelectric material does not possess an inversion center and is thus noncentrosymmetric. 

Piezoelectric materials are materials in which a stress applied to the crystal will change the 

electric polarization. All crystals that are ferroelectric are also piezoelectric. Ferroelectric and 

pyroelectric materials are noncentrosymmetric and possess a unique polar axis. A pyroelectric 

material is a material in which as heat is applied the electric polarization changes.  
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For dielectrics, the polarizability must come from either ionic or electronic contributions. Ionic 

polarizability can make the largest contribution in ferroelectrics. It is important to note that in a 

ferroelectric material the polarization does not disappear when the external field is removed, and 

the direction of the polarization is reversible. The internal electric dipoles of a ferroelectric 

material are physically tied to the material lattice, so if a change occurs in the physical lattice, a 

change of the strength of the dipoles and can cause current to flow into or out of the capacitor 

even without the presence of external voltage across the capacitor. Ferroelectrics also have a 

nonlinear relationship between polarization(P) and electric field(E). Hysteresis is an important 

feature of a ferroelectric material. Hysteresis is the dependence of a state of a system on its 

history and is seen as a loop in the P v. E graphs for ferroelectric materials. Spontaneous 

polarization is a function of temperature, as spontaneous polarization decreases with an increase 

in temperature and vanishes at the Curie temperature.  
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Section V: Landau Theory of Phase Transitions 

 

 

The Curie temperature is the temperature above which materials lose permanent magnetic 

properties. The Curie temperature is denoted and is also referred to as the Curie point. Some 

ferroelectric crystals have no Curie point because they melt before leaving the ferroelectric 

phase. Here we must also discuss the Landau theory of phase transitions as ferroelectric 

materials may be classified based on first or second order phase transitions. A first order phase 

transition is based on the idea that the free energy can be expanded as a power series in the order 

parameter which is m. For second order phase transitions, the order parameter increases from 

zero at the phase transition and the first few terms of the power series will dominate. If the free 

energy is expanded to the sixth order in the order parameter, the system will undergo a first order 

phase transition if 𝛼0>0, β < 0 and 𝛾 >0. 

𝑓(𝑇) = 𝑓0(𝑇) + α0(𝑇 − 𝑇𝑐)𝑚
2 +

1

2
Β𝑚4 +

1

3
γ𝑚6α0 > 0, Β < 0, γ > 0. 

𝑓0(𝑇) describes the temperature dependence of the high temperature phase near the phase 

transition. The order parameter m minimizes the free energy: 

𝑑𝑓

𝑑𝑚
= 0 = 2𝑎0(𝑇 − 𝑇𝑐)𝑚 + 2Β𝑚3 + 2γ𝑚5 

One solution is m= , so cancel one factor of m: 
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0 = 2α0(𝑇 − 𝑇𝑐) + 2β𝑚2 + 2γ𝑚4 

And solving further can be found in: [14] 

 

The reason we introduce the Landau theory of phase transitions here is because we may wish to 

investigate the thermodynamic properties of a ferroelectric crystal. When attempting to calculate 

the free energy of other thermodynamic properties, the calculation can be tedious because we 

first must calculate the density of states. In an effort to curtail this tedious process, one must use 

calculations based on Landau’s theory of phase transitions, i.e. expansion of a power series as an 

approximation for the order parameter. The order parameter is used to measure how ordered a 

system is, and is zero above a phase transition and nonzero below. Order parameters are also 

important because they can visually distinguish a first order phase transition from a second order 

phase transition.  

 

The most common thermodynamic properties we are concerned with when working with 

ferroelectrics are the dielectric susceptibility and dielectric displacement. The dielectric 

susceptibility measures the degree in which a ferroelectric material polarizes in response to an 

applied electric field. The dielectric displacement is essentially the displacement measure of the 

spontaneous polarization for a ferroelectric material. Consider the following relation between 

Gibb’s free energy and polarization: 

𝐺 = (
α

2
)𝑃2 + (

β

4
)𝑃4 + (

γ

6
)𝑃6 − 𝐸𝑃 
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𝐺 is Gibb’s free energy, 𝑃 is polarization, α is a temperature dependent coefficient, β and γ are 

temperature independent coefficients, and 𝐸 is the electric field. We find the minimum of the 

Gibb’s free energy with respect to polarization, recalling how to find a minimum from calculus: 

𝑑𝐺

𝑑𝑃
= 0, 𝐸 = α𝑃 + β𝑃3 + γ𝑃5 

 

 

 

Section VI: History of Ferroelectric Materials  

 

In 2011, Boscke et al.[6] discovered experimentally that silicon doped HfO2 thin films of 10 nm 

thickness are ferroelectric. Mueller et al. demonstrated that PE curves of thin 𝐻𝑓1−𝑥𝑍𝑟𝑥𝑂2 films 

in the concentration range of 0<= x <=1 with the result that 𝐻𝑓𝑂2 is a linear dielectric. 

Ferroelectricity is thickness dependent and disappears in thicker films. This demonstrates the 

size effect, which is when ferroelectricity disappears in thicker films. In contrast, ferroelectric 

perovskites are ferroelectric in thicker films but lose electric characteristics under thin film 

conditions. The surface energy may explain the size effect since it depends on surface area. 

Boscke et al. also demonstrated the relationship between piezoelectricity and ferroelectricity via 

capping electrodes. Mechanical encapsulation inhibits the tetragonal phase of Si:HfO2 and led to 

creation of the orthorhombic phase which is ferroelectric. Additionally, in 2012 Muller et al. 

investigated thin 𝐻𝑓1−𝑥𝑍𝑟𝑥𝑂2 films experimentally showing that pure HfO2 is a linear dielectric, 

meaning in HfO2 the polarization is linearly related to the electric field. Many other studies were 
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Crystal System Point Group Space group number Abbreviation 

Monoclinic 𝑃21/𝑐(2/𝑚) 14 m-phase 

Orthorhombic  𝑃𝑏𝑐𝑎(𝑚𝑚𝑚) 61 o-phase 

Orthorhombic(polar) 𝑃𝑐𝑎21(𝑚𝑚2) 29 p-o-phase 

Orthorhombic(polar) 𝑃𝑚𝑛21(𝑚𝑚2) 31 p-o’-phase 

Tetragonal 𝑃42/𝑛𝑚𝑐(4/𝑚𝑚𝑚) 137 t-phase 

Orthorhombic 𝑃𝑛𝑚𝑎(𝑚𝑚𝑚) 62 o’-phase 

Cubic 𝐹𝑚3 𝑚(𝑚3 𝑚) 225 c-phase 

 
Table 1.1 Space groups, point groups, space group number and abbreviation for phases of Hafnia 

 

carried out from diverse groups and found ferroelectricity in 𝐻𝑓1−𝑥𝑍𝑟𝑥𝑂2 or doped 𝐻𝑓𝑂2 thin 

films manufactured with different deposition techniques like ALD, chemical solution deposition, 

sputtering or pulsed laser deposition. From Shuvalov, the point symmetry mm2 displayed by 

𝑃𝑐𝑎21 and 𝑃𝑚𝑛21 phases, the point symmetry m displayed by Pm and Cc phases, and the 

symmetry 1 displayed by the P1 phase are three ferroelectric subgroups of the 4/mmm tetragonal 

point group. The symmetry requirements for ferroelectric phases that result from parent nonpolar 

phases through distortions are definitive.  

 

In 2014, Huan et al. demonstrated the ability to systematically and computationally identify 

ferroelectric phases of a given material system. Using a minima-hopping method to identify low-

energy phases at different pressures and temperatures and then using group theoretical symmetry 

reduction principles which were established by Shuvalov, one is able to identify the ferroelectric 

phases of the system. The minima-hopping method is an algorithmic technique that finds the 

global minima for energy in a condensed matter system. Utilizing this method, Huan et al. was 

able to find that the 𝑃𝑐𝑎21 and 𝑃𝑚𝑛21 orthorhombic space group are ferroelectric.  
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High k dielectrics have various applications in the semiconductor industry and essentially extend 

Moore's law and prevent leakage effects. Moore's law describes the doubling of transistors in 

microchips which leads to increased speed and capability in computers. In complementary metal-

oxide semiconductors, leakage can occur because of quantum tunneling effects. Complementary 

metal-oxide semiconductors are continually downsized by reducing the thickness of gate 

insulators, and CMOS[1] is technology used for constructing integrated circuits. The leakage 

problem can be solved by using an insulator with a dielectric constant higher than SiO_2, this 

would allow for an increased physical thickness of the gate insulator. Hafnia exhibits a 

switchable spontaneous electric polarization which indicates this is a ferroelectric material with a 

high dielectric constant[2].  

 

There are many different phases of Hafnia: monoclinic, tetragonal, cubic and orthorhombic. 

Starting with the monoclinic phase of Hafnia, Hafnia undergoes phase transitions which result in 

different space groups. The temperature at which the tetragonal phase is induced is 2000 K and 

cubic phase is induced at 2900 K[1]. Different dielectric constants vary from phase to phase. The 

average dielectric constants are highest for the cubic and tetragonal phases. In order to force a 

high temperature phase to be stable in Hafnia, one would need to introduce cation dopants.  

 

Ferroelectricity in Hafnia is often investigated as the origins are not fully understood yet. The 

origin of ferroelectricity in Hafnia is most likely due to  the noncentrosymmetric polar phase[3], 
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which is stable under certain conditions. The Pca2_1 orthorhombic phase is specifically shown to 

be stable. Ferroelectricity in Hafnia rises from creation of the polar orthorhombic phase (Pca2_1) 

during a rapid annealing process and a capping electrode[3]. Ferroelectricity is dependent on a 

variety of factors, including:  Doping species, concentration, annealing temperature, film 

thickness. 
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 Figure 2: Energy cutoff convergence test 

Results 

Ferroelectricity was first measured in Si-doped 𝐻𝑓𝑂2 by Boscke et al, and in many following 

studies the influence of various dopants on ferroelectricity and pyroelectricity in 𝐻𝑓1−𝑥𝑍𝑟𝑥𝑂2 

was investigated experimentally and computationally. Dopants influence phase stability and 

provide a method to induce ferroelectricity in otherwise unstable phases.  In doping Hafnia with 

Al, ferroelectricity is more efficiently induced in the orthorhombic phases. A geometry 

optimization was done with Vienna ab initio Software Package(VASP) and using generalized 

gradient ascent(GGA) with a projected augmented wave(PAW). The basis cutoff was 500 eV 

and was expanded as a 2x2x2 supercell constructed from optimized substitutions. In order to 

determine the correct basis cutoff, a cutoff convergence test was conducted by varying the 

energy cutoff with the ground state energies to find a minimum value. We can see from Figure 9 

that the energy cutoff’s effect on the ground state becomes constant at 400 eV. 
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The initial hafnia structure was created in Materials Studio for each phase. Then, the Al was 

introduced as replacing one of the hafnium atoms. In the 3% geometry optimization, the structure 

as generated by a 2x 2 x2 supercell, resulting in 32 Hf atoms and 64 O atoms. One of the Hf 

atoms was replaced, resulting in 
1

32
  which is 3.1%. After doping the system, a geometry 

optimization was carried out. Using a basis cutoff of 500 eV and GGA PAW potentials, an 

optimized structure was realized. For the 6% optimization, a supercell of 2x2x1 which contains 

16 Hf atoms and 32 O atoms. In this case, replacing one hafnia atom yields 6.1%, since 
1

14
 is 

about 6.1%. After doping the 6% system, the system was geometrically optimized using a basis 

cutoff of about 500 eV. For the 5% case, a supercell of 5 x 1 x1 results in 
1

20
, since one of the 20 

Hf atoms is replaced by Al. In order to calculate the percentage of Al in the system, given an n x 

n x n supercell, for hafnia one calculates n * n * n * 4. This number dictates the total number of 

Hf atoms in the system and the number of O atoms is determined through doubling the amount 

of Hf atoms. We take the number of Hf atoms and replace it by a certain number x of Al atoms, 

introducing the dopant to the system. Then, we calculate 𝑥/(𝐻𝑓_𝑡𝑜𝑡𝑎𝑙 ) * 100 to determine the 

percentage of Al in the system.  

The Brillouin Zone points were sampled using the Monkhorst-Pack method, which consists of an 

evenly spaced grid of points in k space. The Brillouin Zone is the simplest cell one can create in 

reciprocal space. Reciprocal space is the Fourier transform of real space, and it is important to 

note that properties in the real space are inverse in reciprocal space, and reciprocal space is often 

called k-space. If the lattice is large in real space, then the lattice will be small in reciprocal 

space, if the lattice is small in real space, then the lattice will be large in reciprocal space. Points 
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in the Brillouin Zone, which are to be sampled for DFT calculations, are denoted as k-points. 

Sampling from a large number of k-points i.e. 20,000 or more means more accurate results from 

the DFT calculations. However, using a large number of k-points can decrease the speed of the 

calculations.  

Further, we did a comparison on the accuracy of LDA v. GGA for calculating ground state 

densities for all Hafnia phases. The accuracy between LDA and GGA is widely discussed in [2] 

and we can see in Figure 12 that the LDA is overestimating the ground state density whereas 

GGA underestimates the ground state density. The difference in accuracy is a product of the 

approximations within the LDA and GGA methods. 

 

Initial Lattice Parameters(Å) Final Lattice Parameters(Å) 

13.7 14.95135 

13.7 12.78889 

11.2 11.57454 

 

Initial Angles Final Angles 

90 91.4673 

90  91.8008 

90 91.0374 

Table 1.2 and Table 1.3: Pre DFT calculation and post DFT calculation, lattice parameters and 

angles after convergence for 𝑃𝑐𝑎21 3% AlHfO2 
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Initial Lattice Parameters(Å) Final Lattice Parameters(Å) 

26.22 26.20115 

5.07957 5.08186 

 5.03739 5.03876 

 

 

Initial Angles Final Angles 

90 90.7421 

90 89.9838 

90  89.6810 

Table 1.3 and Table 1.4: Orthorhombic Al:HfO2 5% Pca21, lattice parameters and angles 

 

 

 

 

 

 

 

Figure 3: AlHfO2 5% Pca21, generated with Materials Studio 5.5 
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Initial Lattice Parameters(Å) Final Lattice Parameters(Å) 

10.13331 10.15058 

10.48552 10.41357 

5.08267  5.07747 

 

 

Initial Angles Final Angles 

90  90.5027 

90 89.8666  

90 90.4377 

Table 1.5 and 1.6: Orthorhombic Al:HfO2 6% Pca21, lattice parameters and angles 

Ground State Energy Percent doped 

-0.129893904605E+04 3 

-.76074319E+03 5 

0.1153662E+02 6 

Table 1.7: Ground State Energies: Tetragonal Al:HfO2 
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Figure 4: P21/c and Pca21 AlHfO2, generated with Materials Studio 5.5 

Ground State Energy  Phase(Al:HfO2) 

-.12251836E+03 Monoclinic(𝑃21/𝑐) 

-.36498480E+03 Rhombohedral(R3) 

-.36517657E+03 Rhombohedral(R3m) 

 

Table 1.8: Ground State Energies for Monoclinic and Rhombohedral Al:HfO2 
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Figure 5: LDA v. GGA, Orthorhombic and Tetragonal HfO2 
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Conclusion 

  

 In this study, we focused on geometric relaxations of Al doped 𝐻𝑓𝑂2 systems in order to 

use with EXAFS data. 𝐻𝑓𝑂2was doped with Al in order to help control the ferroelectric phases 

in 𝐻𝑓𝑂2. It is generally understood that the orthorhombic phases of Hafnia are ferroelectric, but 

others are not. In order to dope the system, Materials Studio software was used to replace one Hf 

atom with Al for various doping percentages. The percentages focused on in this study were 3%, 

5% and 6%. The different phases investigated in this study were the monoclinic, tetragonal and 

orthorhombic. After doping the system, VASP was used to perform DFT calculations for 

different meshes, and configurations. Our goal was to geometrically optimize the system by 

pushing it to the minimum free energy. 

 After running the geometric optimizations, we obtained good convergence which works 

well with the EXAFS fits. There were two main sources of data for this study: EXAFS fits and 

cif files generated from DFT calculations. The EXAFS fits represent the experimental portion of 

the study and the cif files represent the theoretical portion.  
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