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Abstract 

 
A hybrid mode of hydrophobic interaction chromatography (HHIC) is an emerging 

chromatographic technique for the separation of biomolecules under non-denaturing conditions. 
This technique separates biomolecules in their native form where the difference in surface 
hydrophobicity is maximized. Hybrid mode of HIC (HHIC) methodology uses HIC stationary 
phases made with poly (alkyl aspartamide) silica columns, which function as a hybrid form of 
conventional HIC and reversed-phase chromatography (RPLC). This research provided 
fundamental knowledge about the impact of chromatographic parameters on the separation of co-
formulated mAbs. The influence of mobile phase parameters such as salt concentration, pH and 
the role of organic modifier and as well as stationary phase parameters on the separation were 
evaluated. This research demonstrated that an adequate chromatographic separation of mAbs and 
related biomolecules was achieved using a low ammonium acetate concentration which was not 
achieved with model proteins previously. The study showed the analytical utility of low 
ammonium acetate condition (0.5M) to widen the chromatographic elution window by eluting 
early eluters faster and late eluters later and also an increase in peak capacity. In addition, low 
ammonium acetate concentration showed a five-fold increase in ESI intensity, which is an 
advantage for online MS. 

 
In Chapter 1, a brief review of the theory, principles of the methodology and the details 

about the poly (alkyl aspartamide) silica columns is provided. In addition, the area of interest and 
the scope of the research is presented. In Chapter 2, the impact of salt concentration and organic 
modifier on the separation of therapeutic monoclonal antibodies and related biomolecules is 
presented. Data demonstrated that using these columns, with low concentrations of ammonium 
acetate, a small portion of organic solvent is required to elute biomolecules in a reasonable time 
frame. The research showed chromatographic separation is achievable under low ammonium 
acetate conditions and also helps to widen the chromatographic window. Assessment of 
conformational changes in the presence of moderate organic content using orthogonal methods is 
also presented. This chapter demonstrates the impact of linear flow velocity and gradient time on 
chromatographic efficiency using these columns. Chapter 3 presented how pH of the mobile 
phase can help tune the chromatographic separation along with the impact of temperature on the 
separation.   

 
In the literature it was clearly discussed that to obtain adequate separation using 

ammonium acetate, a pentyl alkyl chain is required. This fact indicates that hydrophobicity of the 
stationary phase has a great influence on retention. In Chapter 4, the effect of alkyl chain length 
and the impact of hydrophobicity on selectivity along with the interdependencies of mobile 
phase parameters and the stationary phase is presented. HHIC chromatographic parameters such 
as organic modifier can induce conformational changes in biomolecules.  Intrinsic fluorescence 
was used to gain basic knowledge on the conformational changes of a biomolecule.  Chapter 5 
provides the experimental results of conformational changes which were obtained using an 
offline batch mode of intrinsic fluorescence and provided fundamental knowledge about possible 
conformational changes in the presence of poly (alkyl aspartamide) silica columns using hybrid 
HIC mobile phases.  
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Chapter 1 : Introduction and Recent Advances in HHIC Using Poly 
(alkyl aspartamide) Silica Columns 

1.1 Overview 

 For the past three decades, therapeutic monoclonal antibodies (mAbs) and their 

derivatives have become the most promising and fastest growing therapeutics to treat various 

diseases such as cancer, autoimmunity, metabolic disorders, and infections 1-2. The unique 

pharmacological advantages of mAbs (e.g., target specificity, selectivity, long half-life, and 

excellent safety profile) and the evolving protein engineering (bispecific antibody, fusion 

protein, antibody-drug conjugate, and nanobody) continuously drive the development of new 

mAb-based therapeutics. Therapeutic monoclonal antibodies act through multiple mechanisms, 

such as blocking of targeted molecule functions, inducing apoptosis in cells which express the 

target, or by modulating signaling pathways 3-4. Monoclonal antibodies treat immunotherapeutic 

diseases, because each type of monoclonal antibody will target a specific targeted antigen in the 

body.  Over 40 therapeutic antibodies have been already approved and more than 450 molecules 

are currently at different stages of clinical development 5-6. Similar to antibodies, mAb-based 

antibody drug conjugates (ADCs) and related products such as Fc fusion proteins also gaining 

more attention to treat various deceases 7-9. There are over 60 ADCs currently at the development 

stage for various indications 10-14 

In recent years, along with mono therapeutics, developing combination drugs became very 

important due to potential advantages. For example, combination drugs provide an option to use 

drugs at lower doses, reducing side effects but increasing efficacy, therefore very well 

established in therapeutic area. Combination drugs present a promising approach for cancer 

research 15-19, viral diseases 20 and anti-toxins 21.  The combination of two or more human 

https://en.wikipedia.org/wiki/Apoptosis
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monoclonal antibodies (mAbs) co-formulated into a single drug product has advantages such as 

reducing medications errors, easy to use  and patient safety 22. In practice, combination 

chemotherapy results in a better response and improved survival compared with single-agent 

therapy. Compared to marketed small molecule combination products, the number of co-

formulated biologics are very limited 23-25. However, the interest is growing. So far only one 

protein co-formulation containing rituximab (MabThera) and human hyaluronidase is currently 

marketed to treat 26 and other examples include the combination of Platinol (cisplatin) and 

Navelbine (vinorelbine) to treat non-small cell lung cancer and TCH (Taxol, carboplatin, and 

Herceptin) for the treatment of HER2/neu-positive tumors 27-28. 

MAbs and their derivatives are considered the most complex biologics due to their complex 

conformational and structural dynamics, large molecular sizes, and micro heterogeneity caused 

by various post-translational modifications. Because of their nature these molecules offer great 

analytical challenges in characterization. To ensure the product quality, comprehensive 

characterization and quantitation of each intact protein and all its variants is very crucial 29 30. In 

addition, co-formulation of therapeutic antibodies increases the complexity of the drug product. 

Therefore, the characterization and release assay development 31 can be extremely challenging. It 

gets more complicated when the co-formulated antibodies have similar physicochemical 

properties and wide disparity in their concentrations. Even though there are robust analytical 

methods such as reversed-phase (RPLC), size exclusion (SEC), ion exchange (IEX), 

hydrophobic interaction chromatography (HIC) or affinity chromatography available, it can be 

highly challenging to characterize biomolecules in combination products due to the ratio of the 

molecules in the drug product. The reason being each of the co-formulated antibodies can exist 

in various heterogeneities such as size, charge, and post-translational modifications (PTMs) 32-33 
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during manufacturing 34-35. As combination therapy is a growing strategy, only limited analytical 

methods have been reported to measure quality attributes in combination biomolecule 

formulations 22.  

 

1.2 Monoclonal Antibodies 

MAbs (Figure 1.1) are glycoproteins, produced by a single clone of cells or cell line and 

consisting of identical antibody molecules. Derivation from a single B-cell clones, having 

monovalent affinity and subsequent targeting of a single epitope is what differentiates 

monoclonal antibodies from polyclonal antibodies.  

 

 
      

Figure 1.1 NIST mAb 
https://www.nist.gov/news-events/news/2018/12/nist-2d-nmr-fingerprinting-study-gives-

biopharmaceutical-sector-new-power 
 Source: www.nist.gov 

https://www.nist.gov/news-events/news/2018/12/nist-2d-nmr-fingerprinting-study-gives-biopharmaceutical-sector-new-power
https://www.nist.gov/news-events/news/2018/12/nist-2d-nmr-fingerprinting-study-gives-biopharmaceutical-sector-new-power
https://www.nist.gov/news-events/news/2018/12/nist-2d-nmr-fingerprinting-study-gives-biopharmaceutical-sector-new-power
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1.2.1 Classification of antibodies 

Humans have 5 classes (Figure 1.2) of antibodies (interchangeably used with 

Immunoglobulins or IgGs): IgG, IgA, IgD, IgE and IgM. All 5 classes are secreted by activated 

B cells as glycoproteins. These glycoproteins are produced by the immune system specifically 

bind to antigen. IgG antibodies are the most common and the most important. As these are the 

smallest, they can easily move across the cell membranes and circulate in the blood and other 

body fluids, protecting against bacteria and viruses. They also bind to the antigens to enhance the 

effectiveness of phagocytosis. Compared to other antibodies IgGs have highest half-life of about 

21-23 days 36.    

 

 

 

    Figure 1.2 Types for Antibodies 
https://commons.wikimedia.org/wiki/File:Figure_42_03_02.jpg 

    Source: commons.wikimedia.org 
 

https://www.genscript.com/IgM-antibody.html
https://commons.wikimedia.org/wiki/File:Figure_42_03_02.jpg
https://commons.wikimedia.org/wiki/File:Figure_42_03_02.jpg
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Through the process of hyper mutation and class switching, high affinity IgGs are 

produced. Human IgG is further subdivided into IgG1, IgG2, IgG3 and IgG4 isotypes (Figure 

1.3), which differ in their heavy chain. They are highly homologous and differ mainly in the 

hinge region and their function in activating the host immune system. IgG1 and IgG4 contain 

two inter-chain disulfide bonds in the hinge region where as IgG2 has four and IgG3 has eleven 

37-38. The elongated hinge in IgG3 is also responsible for its higher molecular weight compared 

to the other subclasses. Even though IgG1 and IgG4 have similar structures, the hinge region of 

IgG4 is shorter than that of IgG1 and its flexibility is intermediate between that of IgG1 and 

IgG2. The CH2 domain of IgG4 has its most marked differences with IgG1 in a surface-exposed 

patch of the C terminal part of the domain, which in the 3D structure is close to the hinge 39. 

IgG1, 2 and 4 widely used in therapeutics, however, IgG2 do not cross the placenta as readily as 

other human IgG isotypes and IgG3, which has a shorter serum half-life, is rarely used 30.   

          

 

 
Figure 1.3. Types of IgGs 

https://www.burnet.edu.au/projects/229_igg_subclasses_and_immunity_to_malaria 
Source: www.burnet.edu.au 

(Reprinted with the permission of Burnet Institute) 

https://www.burnet.edu.au/projects/229_igg_subclasses_and_immunity_to_malaria
https://www.burnet.edu.au/projects/229_igg_subclasses_and_immunity_to_malaria


23 

 

Table 1.1. IgG Antibody Isotype Comparison 
 

Property IgG1 IgG2 IgG3 IgG4 

Molecular Weight (KDa) 146 146 170 146 

Amino acids in hinge region 15 12 62 12 

Inter-H chain disulfide bonds 2 4 11 2 

Half-life (days) ~21 ~21 7 ~21 

Relative abundance (%) 60 32 4 4 

 

1.2.2 Antibody structure 

Antibody molecules are roughly Y-shaped molecules (Figure 1.4) consisting of three 

equal-sized portions, loosely connected by a flexible chain 40.  Each chain has a tertiary structure 

consisting of distinct domains.  Each domain in an antibody has a very similar structure of two 

beta sheets packed closely against each other. This whole assembly is finally into a quaternary 

structure and stabilized by various interactions such as ionic interactions and hydrogen bonds 

(Refer to section 1.2.3). IgG antibody is composed of one or more units, each containing four 

polypeptide chains: two identical heavy chains (H) and two identical light chains (L) 37. Each 

heavy chain has about 500 amino acids and a molecular weight of ~50 kDa, as each light chain 

has about 210 amino acids and a molecular weight of ~25 kDa, resulting in a total 

immunoglobulin monomer molecular weight of approximately 150 kDa. The two heavy chains 

are each linked to each other and to a light chain by disulfide bonds. The resulting tetramer has 

two identical halves. Each end of the fork contains an identical antigen binding site, thus, each 

IgG has two antigen binding sites. The amino terminal ends of the polypeptide chains show 

considerable variation in amino acid composition and are referred to as the variable (V) regions 

to distinguish them from the relatively constant (C) regions. Each L chain consists of one 
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variable domain, VL, and one constant domain, CL. The H chains consist of a variable domain, 

VH, and three constant domains CH1, CH2 and CH3. CH2 domain is overlaid by an 

oligosaccharide (N-glycosylation) covalently attached as Asn297 41. There are three 

complementarity-determining regions (CDRs) in each light chain and heavy chain variable 

region, where antibodies bind to their specific antigen.  

 

 

 
Figure 1.4. Structure of an Antibody 

www.bing.com/images/search?view=detailV2&ccid=QWoTyXet&id=772E1BA31E4E8C7AE88
C19125374F346613EB920&thid=OIP.QWoTyXetrFsRrLFSEC0OfAAAAA&mediaurl=http%3a
%2f%2fi.stack.imgur.com%2f2DGzI.jpg&exph=357&expw=459&q=structure+of+an+antibody
&simid=608045000885865324&selectedIndex=19&qft=+filterui%3alicense-L2_L3   

Source: www.bing.com 
 

 
1.2.3 Chemical bonds involved in antibody structure 

The function of the mAb depends on the quaternary structure of the molecule. The 

structure is stabilized with non-covalent interactions between CH3 domains and the inter chain 

disulfide bonds at the hinge region. The tertiary structure (Figure 1.5) of proteins is determined 



25 

 

by a variety of attractive forces, including hydrophobic interactions, ionic bonding, hydrogen 

bonding, and disulfide linkages. Individual amino acids are bonded together in a polypeptide 

chain to make the backbone. The bonding interactions that are present in a mAb are hydrogen 

bonding, ionic bridges (a salt bridge is a combination of two noncovalent interactions: hydrogen 

bonding and electrostatic interactions), disulfide bonds, and hydrophobic intermolecular 

interactions. Hydrogen bonds form between the oxygen of the C=O of each peptide bond in the 

strand and the hydrogen of the N-H group of the peptide bond. Salt bridges, ionic interactions 

between positively and negatively charged sites on amino acid side chains, will also help 

stabilize the tertiary structure of a molecule. Cysteine will contribute to form disulfide bridges to 

stabilize the tertiary structure, allowing different parts of the molecule chain to be held together 

covalently. The alkyl groups of non-polar amino acids form hydrophobic interactions between 

one-another. MAbs consist completely of beta sheets, which are stabilized with the help of 

hydrogen bonds. The three-dimensional shape of the molecule and its function will be 

determined based on all of these interactions.  

 

 

 
Figure 1.5. Chemical bonds involved in tertiary structure 

https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_tertiary.jpg 
Source: Courses.lumenlearning.com 

https://en.wikipedia.org/w/index.php?title=Covalent_interactions&action=edit&redlink=1
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Electrostatic_interactions
https://en.wikipedia.org/wiki/Electrostatic_interactions
https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_tertiary.jpg
https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_tertiary.jpg
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1.3 Challenges in Analytical Characterization of Antibody and Related 

Therapeutic mAbs are produced using living organisms and manufactured using complex 

processes. As these biomolecules are very sensitive to process conditions, synthesis can cause 

various post- and co-translational modifications introducing intrinsic heterogeneity 42, which 

may affect biological activity resulting in molecular variability.  Some of the structural 

differences are glycoforms, charge variants, cysteine-related, oxidized amino acid side chains, 

formation of aggregates,  deamidation products as well as amino and carboxyl terminal amino 

acid additions and low level point mutation variants 29, 43. These small structural changes can 

affect preclinical stability and process optimization in addition to therapeutic product potency, 

bioavailability and immunogenicity. The development of a successful therapeutic mAb needs the 

identification and manufacture of a selective and potent molecule that performs the required task, 

humanization of sequences, affinity maturation, Fc engineering to modulate effector functions. In 

addition, the development also requires proper engineering to address biophysical liabilities that 

would negatively impact manufacturability and/or patient effectiveness. 

Developing therapeutic biomolecules is a highly complex process and there are many 

factors that can challenge the manufacturing, processing and storage, which can in turn cause 

physical and chemical degradation of the product. The most common causes of physical 

degradation are excessive temperature, mechanical, and freeze/thaw stresses. Chemical 

degradation affects the primary sequence and may also lead to significant changes in the higher 

order structure (HOS). Examples of chemical degradation include deamidation, oxidation, 

isomerization, hydrolysis of a peptide bond, clipping/fragmentation, and cross-linking. The 

reason that both physical and chemical degradation are so critical is that the efficacy of mAb-

based therapeutics is closely tied to their structural, conformational, and chemical stability. To 

https://en.wikipedia.org/wiki/Deamidation
https://en.wikipedia.org/wiki/Bioavailability
https://en.wikipedia.org/wiki/Immunogenicity
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deliver a therapeutic drug with a greater patient’s safety, characterization to understand structural 

differences, physical degradation and chemical degradation are extremely important.  

In addition to mAbs, Fc fusion proteins and ADCs which are manufactured by either 

joining two or more genes that originally coded for separate biomolecules or an addition of the 

drug payload to an already structurally-complex antibody via a linker molecule, characterization 

of ADCs presents a substantial challenge from an analytical development perspective 44 45. 

Combining these complex molecules and making co-formulation of therapeutic antibodies 

increases the complexity of the drug product. Therefore, the characterization and release assay 

development 31, can be extremely challenging. It gets more complicated when the co-formulated 

antibodies have similar physicochemical properties and significant difference in their 

concentrations. Even though there are robust analytical methods available, it can be highly 

challenging to characterize biomolecules in combination products due to the ratio of the 

molecules in the drug product and each of the co-formulated antibodies can exist in various 

heterogeneities in size, charge, and post-translational modifications (PTMs) 32-33 during 

manufacturing 34-35. As combination therapy is a growing strategy, only limited analytical 

methods have been reported to measure quality attributes in combination biomolecule 

formulations 22.  
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Figure 1.6. Mab and related biomolecules 
 

There are various methods available to analyze biomolecules. However, many challenges 

remain for top-down proteomics, including the challenges to separate biomolecules in their 

native intact conformation 46-47. There are several liquid chromatographic techniques that are 

well established to characterize biomolecules, such as reversed-phase liquid chromatography 

(RPLC), size exclusion chromatography (SEC), ion exchange chromatography (IEX) and 

hydrophobic interaction chromatography (HIC). However, the ideal method is a liquid 

chromatography (LC) which can use volatile mobile phases to separate complex mixtures. These 

methods offer the advantage of an online separation with direct coupling to a mass spectrometer 

and is compatible for automation where fraction collection process can be avoided to achieve 

high-throughput analysis 48.  However, the number of chromatography methods that are 

compatible with online MS capability is limited 49. Hydrophilic interaction chromatography 

(HILIC) is one of the techniques which can be directly coupled with MS, but HILIC uses 

solutions which contain high concentrations of organic solvent, which can then denature the 

biomolecule 50.  The separation in Size Exclusion Chromatography (SEC) and Ion Exchange 

Chromatography (IEC) is performed using a volatile buffer containing ammonium acetate. Even 

though these techniques are compatible for MS 51, SEC is not yet a high-resolution method 51. 

While IEC is a high-resolution method, complex protein mixtures often require more than one 
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dimension of fractionation 52. Reversed-phase Chromatography (RPC) is the most commonly 

used chromatographic method which is MS compatible 53-58, and has been used in the 

purification and analysis of biological molecules. Nevertheless, chromatographic conditions such 

as high temperature, and mobile phase components such as high organic content and stronger 

hydrophobic stationary phases can denature and expose numerous hydrophobic moieties of the 

biomolecule 59-61. This can cause adverse effects such as loss in biological activity, peak 

broadening, low protein recovery, and also adsorbed on to highly hydrophobic stationary phase 

resulting in failure to elute from the column 59. Therefore, the use of RPLC methods is 

uncommon for large-scale protein separations 62 and there is a need for additional methods for 

online LC-MS that can provide high-resolution separation of a wide range of proteins with 

minimal denaturation. 

HIC is an alternate liquid chromatographic techniques for RPLC where the separation of 

biomolecules is based on hydrophobicity.  To overcome some of the RPLC challenges, HIC has 

been used as an alternative method to separate proteins. The main advantage of HIC is that 

separation can be achieved under protein native conditions where the differences in the surface 

hydrophobicity will be maximized for molecules with high degree of sequence homology. 

Although both HIC and RPLC separation mechanisms are based on hydrophobicity, HIC 

separation is based on native surface hydrophobicity 63 and RPLC separation is based on the 

hydrophobicity of either partially denatured protein or fully denatured protein. In addition, HIC 

selectivity can be improved by modifying the column matrix surface, the alkyl chain bonding 

density and  mobile phase variables 64.   

HIC is one of the most widely used techniques for determining the relative 

hydrophobicity of mAbs, to separate the different populations of ADC molecules that differ in 
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their number of drugs per antibody (drug-to-antibody ratio) species and also to separate and 

characterize their positional isomers 65-66. The separated proteins can be collected for further 

activity measurements (such as cell based potency, receptor binding, cell proliferation assay, 

enzyme assay, functional enzyme linked immunosorbent assay (ELISA) and many more). HIC 

has been a valuable tool in downstream purification process where it is frequently used for 

protein purification based on the apparent hydrophobicity of impurities 63, 67-68. Due to the nature 

of the technique, it gained a lot of importance in analytical separation of micro-heterogeneity in 

mAbs caused by post translational modifications and the analysis of antibody drug conjugates. 

Methionine and Tryptophan oxidation are common chemical modifications which affects the 

activity loss in biomolecules 69. Oxidized mAb microvariants are generally characterized using a 

bottom up (peptide mapping) approach and techniques such as HIC and RPLC 70. In a case study 

Boyd et al 71 showed that HIC was able to isolate oxidized Trp IgGs from a basic peak hence 

enabling the monitoring of Trp oxidation. In addition, HIC demonstrated the capability of 

separating oxidized Met and deamidation products that coelute with another basic peak under the 

same conditions. 

As previously described 44 conventional HIC may not be efficient enough to separate 

positional isomers at protein level. However, HIC under low salt concentration with online MS 

compatibility may extend capabilities to monitor isomerization. 
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1.4 Commercially Available HIC Columns to Characterize Antibodies and 
Related Molecules 

HIC is a growing separation technique to separate biological molecules and only limited 

number of columns with different matrices are available to achieve adequate separation. 

Columns with solid phase description including known applications are indicated in Table 1.2.  

Below are the commercially available columns for conventional HIC chromatography 66. 
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Table 1.2. HIC-HPLC Columns and Analytical Applications for mAbs and related molecules 66. 

 
Column Solid phase Particle/pore size Application 

Dionex Propac proprietary ethyl/amide 
based chemistry on non-
endcaped silica 

5 μm, 300Å pore size Trp oxidation, Asp 
isomerization, succinimide in 
mAbs, Carboxy terminus 
processing in Fc, serine O-
fucosylation 

TSKgel butyl-NPR butyl on polymethacrylate 
base material 

2.5 μm, (non-porous) Proteolytic cleavage 
aggregates, misfolded 
domains.  

TSKgel 
phenyl- 5PW 

phenyl on 
polymethacrylate base 
material 

10 μm, 1000Å pore 
size 

Asp isomerization in mAbs, 
Fab N-glycosylation, free thiol 
in Fab 

TSKgel ether-5PW poly ethyl ether on 
polymethacrylatebase 
material 

10 μm, 1000Å pore 
size 

(Fab)2 purification, Antibody 
drug conjugates 

Sepax Proteomix HIC Butyl  Spherical, highly cross-
linked PS/DVB 

1.7, 5 and 10 μm, 
non-porous 

Proteins, mAbs, ADCs, 
oligonucleotides and 
peptides 

MAbPac HIC-Butyl  Hydrophilic  polymer-
based 

5 μm non Porous mAbs and ADCs 

POROS P2/20 Phenyl on 
polystyrenedivinylbenzene 
particles 

20 μm, 500–10000Å 
pore size 

Preparative applications 

PolyLC ethyl Aspartamide ethyl/aspartamide on silica 5 μm, 1000Å pore 
size 

Antibodies, polypeptides and 
proteins 

PolyLC methyl Aspartamide methyl/aspartamide on 
silica 

5 μm, 1000Å pore 
Size  

Isolation of integral membrane 
proteins and their complexes 

PolyLC propyl Aspartamide propyl/aspartamide on 
silica 

5 μm, 1000Å pore 
size 

Antibodies, Antibody  minor 
variants, polypeptides and 
proteins 

PolyLC butyl Aspartamide propyl/aspartamide on 
silica 

2 and 3 μm, 1000Å 
and 1500 Å pore size 

Antibodies 

PolyLC pentyl Aspartamide propyl/aspartamide on 
silica 

2 and 3 μm, 1000Å 
and 1500 Å pore size 

Antibodies and proteins 

   (Adopted with the permission of Taylor & Francis) 
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1.5 Theoretical Aspects of HIC 

Since RPLC technique operates under protein denaturing conditions such as mobile phase 

with acidic additive, high percentages of organic modifier, elevated temperatures and stationary 

phases with high hydrophobicity, it is very difficult to separate the biomolecules with minor 

hydrophobicity differences. In those circumstances, HIC will be a valuable tool 72 where it can 

separate molecules with very minor differences in overall hydrophobicity and significant 

difference in surface hydrophobicity. In 1948, for the first time Tiselius 73 described the 

separation concept of HIC based on the protein salting-out principle. Later on, in 1973 Hjertén 

called this mode of separation hydrophobic interaction chromatography 67. Due to the unique 

characteristic nature of this technique, HIC gained a significant interest in the industry. In 2016, 

Fekete 74 clearly showed in Figure. 1.7, the difference in chromatographic profiles of a reduced 

mAb obtained by both RP and HIC. In HIC, the original “Y” shape of the mAb is maintained 

even after the disulphide bridges have been reduced. Whereas in RPLC, the heavy- and light 

chains (Hc, Lc) are well separated.   
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Figure 1.7. Analyzing intact and reduced mAb (adalimumab) in RPLC and HIC 74  

(Adopted with the permission from Elsevier) 
 
 

HIC retention model is a complex mechanism because multiple gradients play a role in the 

separation. Throughout past few decades, there have been many fundamental studies which led 

to the different retention models and various theories such as hydrophobic interaction, 

hydrophobic effects, solvophobic theory, salting-out effect and dehydration of proteins to explain 

the retention in HIC. Based on these theories and experimental results it was clear that protein 

retention in HIC is driven by multiple parameters.  

 

1.5.1 Salting-out effect 

The concept of protein chromatography is based on hydrophobic interactions. In protein 

chromatography, the mobile phases are salt solutions, so Tiselius used the term “salting-out 

chromatography”. A salting-out effect is the interaction of mobile phase – protein in HIC, which 

means nonelectrolyte proteins become less soluble in an electrolyte mobile phase which is in 
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high salt concentration. In aqueous solutions, proteins fold and the hydrophobic amino acids 

form protected hydrophobic areas, whereas hydrophilic amino acids interact with the 

surrounding water molecules to form hydrogen bonds. If the hydrophilic surface of the protein is 

large enough, then the protein can be dissolved in water. When salts are added to the solution, 

most of the water molecules will solvate salt ions and the number of water molecules available to 

interact with the hydrophilic amino acids will decrease. As a result, the protein–protein 

intermolecular interactions become stronger due to the decreased amount of surrounding water 

molecules. In the end, the protein molecules can self-associate (aggregate) by forming 

hydrophobic interactions with each other 74. Because the separation is highly dependent on salt 

gradient, this mode separation was also called “salt mediated separations of proteins”. In 1986, 

Porath proposed that it be called “salt-promoted adsorption” or “salt-promoted adsorption 

chromatography (SPAC)” as alternative names for HIC 75. 

 

1.5.2 Hydrophobic effects, formation of cavity 

In general, a hydrophobic effect is defined as the tendency of nonpolar molecules to 

self‐associate in water rather than to dissolve individually. Hydrophobicity is defined as the 

repulsion between a non-polar moiety of the protein and of the polar environment such as water 

63. This effect is responsible for the low solubility of proteins 75-76. On the same token, the term 

“hydrophobic interactions” is frequently used to describe the forces resulting in the association 

of nonpolar molecules or the binding of hydrophobic moieties in aqueous solutions. When 

biomolecules dissolve in aqueous system, water cannot make hydrogen bonds with nonpolar 

moieties of the protein. Due to that reason, the neighboring water molecules get separated from 

each other to form a cavity for the protein 77. This process requires energy. On the other hand, 
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when two or more molecules come closer, they are associated with hydrophobic interactions. As 

a result, their hydrophobic contact surface area is reduced and energy is released (exothermic). 

The amount of energy is proportional to the size of the hydrophobic contact surface area of the 

protein. In other words, the aggregation or (self-association) in aqueous solutions is a 

spontaneous process and is mainly driven by the entropy change 77-80. The orientation of the 

water molecules at the cavity around the non-polar protein molecule will lead to a large entropic 

effect 81-82. Sturtevant and Livingstone later demonstrated that the heat capacity change in 

transfer-into-water processes is driven by the change in the water-accessible non-polar surface 

area of the molecule 74, 83-84. Overall, hydrophobic interactions not only involve entropic effects 

but are entropy driven at low temperatures, and enthalpy driven at elevated temperatures, when 

the heat capacity change remains constant in the range of experimental temperature 85.  

 

1.5.3 Solvophobic theory 

The solvophobic theory explains the interactions between polar solvents (aqueous mobile 

phase) and less or non-polar solutes (protein). In polar solvents, strong cohesive forces are 

present between the solvent molecules due to hydrogen bonding and other polar interactions 

provide a strongly structured order. Therefore, less polar solutes tend to be insoluble because 

these strong solvent–solvent binding interactions must be overcome to make bonds with polar 

solvents. According to this theory, the solute molecules adsorb to the surface of the stationary 

phase as a result of their rejection from the polar solvent and their attraction for the hydrophobic 

stationary phase 86. This seems to be the mechanism for the molecule retention in liquid 

chromatography, in general.  Horváth et al. used solvophobic theory to explain the basis of 

retention mechanisms in RPLC 87.  
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1.6 Principle of HIC 

Hydrophobic proteins will self-associate (aggregate) or interact with each other when they 

dissolve in aqueous solutions. This interaction between the molecules can result in various 

biological interactions, such as protein folding, protein-substrate interactions, etc. HIC is used in 

both analytical and protein purification application to characterize biomolecules. The basic 

principle of HIC is hydrophobic regions in large molecules bind to hydrophobic alkyl chains of 

the stationary phase. These interactions occur in an environment which helps hydrophobic 

interactions, such as high salt solutions 68.  

In general, water (a polar solvent) is a poor solvent for nonpolar molecules. Therefore, in 

pure water, proteins will self-associate or aggregate, in order to achieve a state of lowest 

thermodynamic energy. Prior to self-association, water molecules form highly ordered 

structures around each individual macromolecule (Figure 1.7). The self-association of nonpolar 

molecules (such as proteins) in the polar solvent is driven by a net increase in entropy of the 

environment. During the aggregation process, the overall surface area of hydrophobic sites of 

the protein exposed to the polar solvent is decreased, resulting in a less structured (higher 

entropy) condition, which is the favored thermodynamic state. 
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Figure 1.8. HIC separation mechanism (1) Biomolecule (2) Alkyl chain on the base matrix (A) 
Ordered water molecules around the hydrophobic patches of the biomolecule in low salt 
conditions (B) Disrupted water shell and biomolecule-stationary phase interactions in high salt 
conditions 
 

HIC separations result from interactions between hydrophobic patches of proteins and 

low-density and moderately hydrophobic alkyl chain 88 attached to the stationary phase, which 

has a base matrix of silica or polymethacrylate 89-90. In conventional HIC, the separation is 

performed using buffer systems by applying a linear salt gradient starting at a relatively high salt 

concentration 91. In highly concentrated salt solutions (mobile phase A), proteins lose their 

hydrated shell and as a result hydrophobic patches will be exposed. These hydrophobic moieties 

will be adsorbed by the hydrophobic surface of the resin causing retention on the stationary 

phase. For protein elution to occur, an aqueous solvent (mobile phase B) containing no or low 

salt concentration is used. This low salt mobile phase will help to reassemble the water shell and 

enable the elution of the proteins from the column based on the surface hydrophobicity (Figure 

1.8).  Therefore, the elution order enables ranking of the proteins on the basis of their surface 

hydrophobicity, with high recovery and high sensitivity to conformational variations 63. 
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1.7 Theory  

 HIC 67, 92-94 chromatography is an established and powerful analytical tool 95 for separating 

biomolecules. The retention in HIC is mainly driven by the hydrophobic interactions between 

amino acid residues of the proteins and the alkyl chains or other non-polar functional groups 

located at the surface of the stationary phase 67, 76. In HIC, retention is mainly affected by the 

biomolecule’s surface hydrophobicity 63-64, 96-98.  

A commonly used salt concentration as the starting condition in conventional HIC is in 

between 1 M of ammonium sulphate of ammonium phosphate and around 5.5 M ammonium 

acetate. The selected concentration of a salt will depend upon the lyotropic strength of the salt, 

the solubility of a biomolecule in the salt solution and the nature of stationary phase used in the 

separation 87, 99-101. The influence of salt type plays a major role in hydrophobic interaction. The 

lyotropic strength of salts follow Hofmeister series (Figure 1.9) for the precipitation of 

biomolecules 102.  The salts that are typically used in the HIC methodology are sulfate, phosphate 

or citrate salts which are at a high lyotropic strength in the Hofmeister series 63. Unfortunately, 

these salts are not compatible with MS analysis 47. As an alternative, a volatile salt such as 

ammonium acetate can be used and is proven to reduce nonspecific sodium adducts 103-104. 

According to the Hofmeister series ranking order, ammonium acetate is not a strong kosmotropic 

salt and acetate ions are at a low position of the series 63. It cannot promote strong hydrophobic 

interactions by completely disrupting hydration shell around the biomolecule to enhance protein-

surface interactions. While acetate allows for compatibility with MS 105, it was proven to provide 

inadequate retention when used with conventional HIC materials 106 which are mostly made with 

butyl alkyl chains and PolyPROPYL A 105 stationary phases. In the presence of ammonium 

acetate, a stationary phase which has alkyl chain length longer than butyl stationary phase may 
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be required to interact with amino acid residues of the mixture of biomolecules for an adequate 

retention. In 1986, Gooding et al. proved that HIC column with pentyl alkyl chains gave 

adequate retention of proteins with 4 M ammonium acetate 104. 

 

 

 
Figure 1.9. Hofmeister series with lyotropic strength 
 

HIC columns are less retentive compared to RPLC columns. The reason for this is that 

the stationary phases which are used in HIC are low-density and moderately hydrophobic ligands 

such as butyl, phenyl or ether, and are attached to a hydrophilic under layer such as silica or 

polymeric material 88-90. Because these columns have low bonding density, the strength of 

retentivity between biomolecules and the alkyl chains can be controlled 68. These weakly 

hydrophobic ligands interact with a limited set of hydrophobic residues on the surface of the 

molecule’s tertiary structure. With the above chromatographic conditions, usually biomolecules 

elute in the order of increasing hydrophobicity, generally with high recovery and high sensitivity 

to conformational variations 63.  In this technique, although molecule size may contribute to 

retention mechanism, surface hydrophobicity and bonding density of alkyl chains determine 

retention 64. Since high concentrated salt solutions are used in HIC, there are very minimal 

secondary interactions, unlike RPLC 107. Therefore, the elution order enables ranking of the 

biomolecules on the basis of their relative hydrophobicity 107.  



41 

 

The retention mechanism of HIC methodology can be altered by adding a small portion 

of organic modifiers. It has often proven as an advantageous parameter in HIC method 

development for decreasing the retention of highly hydrophobic compounds and also to adjust 

selectivity 89, 107-108. Maintaining all of the mobile phase conditions of conventional HIC and 

adopting the use of an organic modifier such as acetonitrile from RPLC, hybrid mode of HIC 

(HHIC) (Figure 1.10) methodology enhances the ability to decrease the retention time of 

adsorbed solutes on HIC stationary phases. Organic solvents will help to weaken the protein-

stationary phase interactions leading to a decrease in the retention time 107, 109. Fekete et al. 

proved that this approach increases the recovery of biomolecules 107, 110 and also allows for the 

separation to be tuned while maintaining biomolecules native conformation 49, 107, 110.  

 

 

 

 
Figure 1.10. Hybrid HIC combines elements of two major chromatographic methods (RPLC and 
HIC) 
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Although conventional and Hybrid HIC compliments other chromatographic techniques, 

it has challenges, such as use of mobile phases with high concentrations of sulfate and phosphate 

salts 111. As these are non-volatile salts 63, they prevent online coupling with mass spectrometry 

(MS). However, volatile salts such as ammonium acetate can be used but in higher 

concentrations.  To overcome this limitation and to potentially provide an alternate selectivity, in 

2016, Alpert used poly (alkyl aspartamide) silica HIC stationary phases that he synthesized by 

derivatizing short polymers such as anhydropoly(aspartic acid), or poly(succinamide) (Figure 

1.11) 112 88 to develop a series of more-hydrophobic HIC materials.  

 

1.8 Preparation of Poly (alkyl aspartamide) Silica  

The following sections will describe the synthesis of poly (alkyl aspartamide) silica 

stationary phases which will provide an option of using lower concentrations of volatile salts 

with an online MS compatibility.  

 

1.8.1 Preparation of poly (succinamide) 

Various studies showed the advantages of using short polymers to prepare coatings for 

inorganic chromatography supports 113. The coatings that are made with these polymers converts 

an inorganic support into a cation-exchange material suitable for protein chromatography. The 

reactive polymer is anhydropoly (aspartic acid), or poly (succinimide) which is formed in almost 

quantitative yield by heating aspartic acid under conditions which causes it to condense (Scheme 

1) 80-84. poly-α, β-D and L-aspartic acid 81-82 were produced from subsequent hydrolysis steps. 

Poly (succinimide) could be used to prepare a variety of chromatographic media in addition to 

the cation exchanger.  
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Figure 1.11. Preparation of Poly (Succinamide) from Aspartic Acid 112 

(Adopted with permission from Elsevier) 
 

1.8.2 Preparation of aminopropyl-silica 

Aminopropyl-silica was prepared by mixing vydac silica with 3-

aminopropyltriethoxysilane in toluene. After a step by step process, in a few hours the product 

was collected and washed well with toluene and acetone, then dried by continued suction.  

 
1.8.3 Preparation of poly (succinimide)-silica 

The dried aminopropyl-silica was swirled and degassed using poly (succinamide) in 

DMF. After 24 hours of swirling at room temperature the product was collected and washed well 

with DMF ad acetone to obtain poly (succinamide)-silica. Then above prepared poly 

(succinamide)-silica was swirled and degassed in a mixture of DMF and containing β-alanine 

and trimethylamine. After 24h of occasional swirling, washing well with HCl, water and acetone 

and going through the drying process, the poly (aspartic acid)-silica will be ready. The coating is 

simple and is easy to prepare reproducibly. The columns packed with this material showed very 

good performance in capacity, selectivity, recovery of enzyme activity and peak shape.  

Due to its reactivity, poly (succinimide)-silica can be used to make various derivatives 

other than poly (aspartic acid)-silica. These derivatives can be used for steric exclusion 
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chromatography and various ligands could be added to the poly (succinimide) coating for use in 

affinity chromatography. 

 

 
Figure 1.12. Reaction scheme for the preparation of poly (Aspartic acid) silica 112 

(Adopted with permission from Elsevier) 
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1.8.4 Preparation of poly (alkyl aspartamide)-silica 

 
Poly (succinimide)-silica was weighed into a flask and swirled in N,N-

dimethylformamide (DMF).  With continuous swirling alkylamine was added along with DMF. 

The resulting mixture was left for 24 h at room temperature with frequent swirling during the 

first 2 h and occasional swirling thereafter. The product was collected in a medium-porosity 

sintered-glass funnel and washed well with water, then hydrochloric acid, water, and acetone, 

and finally dried by continued suction to obtain poIy(alkyl aspartamide)-silica 88.  

 

 
Figure 1.13. Reaction scheme for the preparation of poly (propyl aspartamide) silica 88 

(Adopted with permission from Elsevier) 
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PolyPROPYL A and PolyETHYL A materials were synthesized and both cation-

exchange capacity 112 and hydrophobic-interaction binding/release (HIB/R) capacity was 

estimated using hemoglobin 64. The results proven the capacity of materials is very high.  

 

 
Figure 1.14. The reaction of Poly(succinimide)-silica with n-propyl amine 88 

(Adopted with permission from Elsevier) 
 

 

Experiments were carried out to study the protein recovery of PolyPROPYL A and 

PolyETHYL A columns and in general greater than 90% recovery was observed. The data also 

demonstrated that most of the molecules eluted with preservation of full activity with some 

exceptions. Later it was confirmed that it was due to higher ionic strength of the medium in 

which molecule was unstable. Research also showed that addition of detergents in the mobile 

phase not only may help with lower recoveries but may also increase selectivity 114. These 

columns were also evaluated for estimating the retention characteristics and conformational 
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lability. The experimental results indicated that for some proteins there were very broad peaks or 

some scenarios multiple peaks were observed.  

Stationary phases with these coatings demonstrated a wide range of hydrophobic properties 

and it was observed that proteins are generally eluted as sharp peaks with good recovery 88. 

Using these columns, the native and denatured forms of biomolecules can be resolved if 

conformation change is slower than the migration time through the column 115-119, otherwise, a 

single broad peak can be expected, which is the weighted average of different conformations 

which are in the equilibrium 117, 119-121. Historically it was proven  that in HIC Van der Waals 

forces are involved  122-123 which will operate in a much shorter range than the range in 

electrostatic effects. This suggests that unlike ion-exchange, the access of the adsorption on the 

stationary phase to adsorption sites on a protein surface will be more sensitive to conformational 

differences in HIC. Therefore, protein with different conformations will have different binding 

affinity in HIC, and protein peaks in HIC usually elute as broader peaks compared to ion 

exchange. The same observation was made by Alpert in his research, as well 88. Based on various 

experiments Alpert indicated that these poly (alkyl aspartamide) coatings of silica capacity is 

very high and can be used for preparative chromatography 88. 

In 2016, Alpert 49 used poly (aspartamide) silica to make new stationary phases with 

longer alkyl chains such as Pentyl, Hexyl up to Decyl. To enhance the capabilities of these 

stationary phases, Chen evaluated 49 the performance of ammonium acetate with columns of the 

existing HIC materials PolyPROPYL A and PolyBUTYL A to estimate the concentration of 

ammonium acetate necessary for the retention of small proteins and to assess the effect of alkyl 

chain length. Through the experiments he demonstrated that these can retain the native structure 

of biomolecules using MS compatible concentrations of ammonium acetate 49 and elute as intact 
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proteins in hybrid mode using ammonium acetate concentration of 1 M or less. This salt 

concentration has previously been demonstrated to be compatible with mass spectrometry 

analysis 124. He also confirmed the new HIC materials can function as a hybrid form of 

conventional HIC and RPLC 49. In addition, he observed that with the new HIC materials some 

organic solvent is required in the mobile phase used in a gradient for the elution of proteins in a 

reasonable time frame 49, 89, 107, 110. These columns are proven to offer high sensitivity, better 

speed and selectivity to simultaneously detect, identify and quantitate molecules in a complex 

mixture based on their mass-to-charge (m/z) ratio.  Recent literature 49, 125-126 demonstrated that 

HIC technique also helps to confidently characterize unknown compounds and confirm trace 

components at the lowest possible levels. 

 

1.9 Area of Interest 

Commercially available HIC columns use either non-volatile mobile phases or high 

concentration of volatile mobile phases. Such salts are not compatible to use with online MS 

because they can cause a reduction in the vapor pressure and consequently a reduced signal. 

They can be used with off-line MS but the desalting step is required before injecting the sample 

onto LC/MS.  

The purpose of this research was to study the chromatographic behavior of mAbs and 

fusion protein on poly (alkyl aspartamide) silica columns using HIC on hybrid mode and 

evaluate the impact of mobile phase components such as salt, pH and organic modifier.  Extend 

the study to estimate the influence of chromatographic parameters on the separation of mAbs 

which helps to enhance the compatibility of online mass spectrometry. In addition, we intended 

to estimate the influence of different hydrophobic alkyl chain strength in HHIC separation mode. 
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The research also was intended to evaluate the effect of gradient time and linear flow velocity on 

retention and efficiency of these columns.  

 

1.10 Scope of the Research 

Protein binding to HIC adsorbents is promoted by moderately high concentrations of 

kosmotropic salts such as sulfate, phosphate, or citrate, which also have a stabilizing influence 

on protein structure. Elution is achieved by a linear or stepwise decrease in the concentration of 

salt in the adsorption buffer. Use of these specific salts in high concentrations is not compatible 

with online Mass Spectrometry (MS) analysis. To make this technique compatible with online 

MS, poly (alkyl-aspartamide) silica material with more hydrophobic stationary phases were 

synthesized and characterized [10] to obtain adequate balance between retention and 

denaturation with online MS compatible salts and their concentrations.  

In earlier research, stationary phase alkyl chains such as butyl to decyl were synthesized 

to increase the ability for protein to be retained on stationary phases consisting of poly (alkyl-

aspartamide) silica. However, it was clearly demonstrated in literature that the selectivity and 

retention on HIC material depends upon the properties of the biological molecules used in the 

analysis and also on several other parameters, such as stationary phase type (backbone, alkyl 

chain length and bonding density), salt concentration, buffer pH, temperature and mode of 

operation.  

In this research, selectivity and retention will be evaluated by studying the effect of salt 

concentration, pH of the mobile phase and percentage of organic modifier. The selectivity of a 

mixture of mAbs will be assessed using poly (alkyl-aspartamide) silica columns with different 

alkyl chain lengths. Based on the experimental results, the working range of the parameters that 
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were studied to achieve acceptable retention while keeping the biomolecule in non-denatured 

form will be discussed. This knowledge will help to enhance the scope of the utilization of HIC 

on hybrid mode chromatography in mAbs separation. 

 

1.11 Research Focus 

This dissertation describes the factors impacting the separation of larger biomolecules 

including mAbs and fusion protein on poly (alkyl aspartamide) silica columns and deconvolute 

the impact of HHIC mobile phase components and different alkyl chain lengths of poly (alkyl 

aspartamide) silica stationary phases. The research also explores the impact of resident time of a 

biomolecule on the column in the presence of organic solvent. In addition, we evaluated the 

impact of linear flow velocity and gradient time on chromatographic efficiency. 

Chapter 2 provides the information about the need of an organic modifier using these 

columns and the impact of the salt concentration on the separation. Experimental details will 

help to understand the chromatographic parameters that influence the retention and selectivity. 

This chapter also describes the impact of longer resident time of a biomolecule on the column in 

the presence of organic solvent. Assessment of conformational changes in the presence of 

moderate organic content using orthogonal methods such as intrinsic fluorescence and Mass 

spectrometry is also discussed.  In addition, the impact of linear flow velocity and gradient time 

on chromatographic efficiency is presented. With these columns a small portion of organic 

solvent is required to elute biomolecule from the column in a reasonable timeframe. Chapter 3 

describes the organic solvents that can be used for the separation and the percentage that is 

required to help in elution. This chapter also focuses on the effect of mobile phase pH, and the 

role of temperature on separation using these columns.  
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In the literature it was clearly discussed that to obtain adequate retention using 

ammonium acetate, greater than propyl alkyl chain is required. This fact indicates that alkyl 

chain length has a great influence on retention. Chapter 4 describes the effect of alkyl chain 

length on the selectivity and interdependencies of salt and the stationary phase. It will also assess 

mobile phase components which can influence chromatographic parameters such as retention 

and selectivity. Chapter 5 will summarize the research findings and provides a deep 

understanding on chromatographic behavior of poly (alkyl aspartamide) silica columns using 

hybrid HIC mobile phases. 
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Chapter 2 : Hybrid Mode of Hydrophobic Interaction 
Chromatography of Monoclonal Antibodies and Related 
Biomolecules: Influence of Elution Conditions on Chromatographic 
Performance Using Poly (alkyl aspartamide) Silica Columns  

2.1 Introduction 

Operating conditions and mobile phase properties such as ionic strength, pH and organic 

modifier play a major role in hybrid HIC chromatographic retention 1-2. In a recent article 2, Chen 

et al. demonstrated that adequate retention can be achieved with relatives low concentrations of 

NH4OAc (~1M) with the poly (alkyl aspartamide) stationary phases using small model proteins. 

In addition they observed that some organic solvent such as acetonitrile is required to elute the 

proteins in a reasonable time frame 2-5.  The similar observations with other HIC 

chromatographic systems has been previously reported 6-8. The purpose of our research was to 

understand the factors impacting the separation of larger biomolecules including mAbs and 

fusion protein on poly (alkyl aspartamide) silica columns and ascertain the impact of salt and 

organic modifier in HHIC mobile phases. The research was also intended to explore the impact 

of longer resident time of a biomolecule on the column in the presence of organic solvent. In 

addition, we evaluated the impact of linear flow velocity and gradient time on chromatographic 

efficiency. 

 

2.2 Experimental Details 

HPLC grade water and MeCN (acetonitrile) were used in all analysis. NH4OAc 

(ammonium acetate) solution was purchased from Teknova, Hollister, CA. MeCN was purchased 

from Sigma-Aldrich and 0.1 N NH4OH solution was purchased from Ricca Chemicals. HIC 

columns, with various stationary phases such as PolyPROPYL A, PolyBUTYL A, PolyPENTYL 
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A, PolyHEXYL A, and PolyHEPTYL A with dimensions of 50 x 2.1 mm, 3µm particles with a 

pore size of 1000 Å were obtained from PolyLC INC, Columbia, MD. Chromatographic 

separations were performed using Waters Acquity H-class HPLC system with a flow rate of 1.0 

mL/min at 25°C and detection by UV absorbance at 280 nm. (PolyPENTYL A column with 

dimensions of 50 x 2.1 mm, 3µm particles with a pore size of 1000 Å gave about 4800 psi 

pressure.) HPLC grade water was used to prepare mAb samples at 1 mg/mL. Molecules that 

were used in this experimental work were monoclonal antibodies (mAb) and a fusion protein.  

Biomolecule 1, 4 and 5 were IgG1s and biomolecule 2 was IgG4, biomolecule 3 was NIST 

(National Institute of Standards and Technology) mAb and biomolecule 6 was IgG4 fc fusion 

protein. Except NIST mAb, all other biomolecules were kindly provided by Bristol Myers 

Squibb (BMS) a Biopharmaceutical Company, New Brunswick, NJ and the names of the 

molecules cannot be revealed. In this dissertation, except NIST mAb, all other mAbs will be 

referenced as biomolecules. Unless otherwise specified chromatographic separations were 

performed at 25°C with initial 0.5 minutes hold and a 10 min linear gradient going 100% mobile 

phase A to 100% mobile phase B. 1 M NH4OAc was used as mobile phase A and 20mM 

NH4OAc (overall) with 50% MeCN as mobile phase B. pH was measured for aqueous mobile 

phases before combining organic solvent. For convenience NH4OAc will be referenced as “salt” 

in the results and discussion sections. Intrinsic fluorescence spectra was collected from 210-400 

and ratio was measured using 330 nm and 350 nm. Mass spectra were acquired using a Waters 

QToF Premier instrument operated in positive electrospray mode using a cone voltage of 40, 

desolvation temperature of either 250 or 450°C, and an ion source temperature of 150°C. 
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2.3 Results and Discussion 

To understand the chromatographic parameters that influence the retention and selectivity of 

large proteins under hybrid HIC conditions, the effect of mobile phase ionic strength, pH and 

organic modifier content was studied on a mixture of six biomolecules.  A Poly PENTYL A 

column was selected for this research after a brief evaluation of available stationary phases 

(PolyPROPYL A, PolyBUTYL A, PolyHEXYL A and PolyHEPTYL A). This column was 

found to be most suitable based on an evaluation of retention, peak shape and analyte recovery 

for the separation of selected mAbs which is in agreement with a recent report  9.  The separation 

was performed using gradient elution in which mobile phase A and mobile phase B with and 

without 50% MeCN (Figure 2.1). Under conditions 4 and 5 (which differ by a slight change in 

mobile phase pH) all biomolecules eluted under the influence of the dual opposing gradients of 

decreasing NH4OAc concentration and increasing MeCN concentration.  A very good separation 

was achieved for all six biomolecules using this broad linear gradient. Without any further 

optimization this technique demonstrated the ability to separate mixture of components some of 

which have a high degree of sequence homology. It should also be noted that these components 

were not screened for favorable chromatographic behavior prior to their inclusion in this study.  

Typically, under conventional HIC operating conditions, low salt concentration will promote 

elution. However, in this study it was found that when an NH4OAc gradient was employed with 

no MeCN in mobile phase B with PolyPENTYL A column (Figure 2.1 conditions 2 and 3), the 

partial elution of only the two least retained (more hydrophilic) biomolecules was achieved and 

no elution was observed with hydrophobic biomolecules even when pure water was used as 

mobile phase B in place of 20 mM NH4OAc (Refer to Section 3.4).  In order to achieve adequate 

elution, inclusion of some MeCN in the mobile phase B was required, which was consistent with 



63 

 

previous findings for the separation of smaller proteins 2.  This result demonstrates even small 

amounts of MeCN can dramatically effect elution. For example, biomolecule 1 elutes at ~ 1.5 

minutes under conditions 4 and 5 in Figure 2.1, which corresponds to MeCN concentration of ~ 

2%.  Nevertheless, when mobile phase B without MeCN was used retention increased and 

chromatographic efficiency was greatly reduced. 

 

 

 
Figure 2.1. Impact of organic modifier on elution using a PolyPENTYL column at 25°C; MP A: 
1M NH4OAc and MP B: 20 mM NH4OAc with and without organic; Sample is a mixture of 6 
biomolecules; 1) MilliQ water blank using MP A and MP B: 20 mM NH4OAc with 50% MeCN 
(aqueous pH@7.0); 2) Sample analysis using MP A and MP B: 20 mM NH4OAc no pH 
adjustment and no MeCN; 3) Sample analysis using MP A @7.0 and MP B: 20 mM NH4OAc pH 
@7.0 no MeCN; 4) Sample analysis using MP A and MP B: 20 mM NH4OAc with 50% MeCN no 
pH adjustment; 5) Sample analysis using MP A @pH7.0 and MP B: 20 mM NH4OAc with 50% 
MeCN (aqueous pH@7.0) 
 

2.3.1 Effect of salt concentration on selectivity 

In general, in HIC chromatography when there is an increase in salt concentration the 

retention of the biomolecule increases. Based on the previous set of experiments, it is apparent 

that the slight modifications to the mobile phase had a significant influence on the retention 
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behavior of the biomolecules studied. To evaluate the effect of salt, we ran a series of 

experiments (Figure 2.2 and 2.3) by varying NH4OAc concentration in mobile phase A from 0.5 

M to 2.5 M while all other parameters were kept constant. In these experiments, peak 1 retained 

longer with an increase in the salt concentration, which is an expected conventional HIC 

retention behavior. As the concentration increased from 1M and above, peaks 1, 2 and 3 

exhibited a fairly linear increase in retention. However, an interesting behavior was observed for 

peak 4, 5 and 6, where the greatest retention occurred at the lowest salt concentration (0.5 M) 

which is a non-typical HIC retention pattern.  Overall, peaks 4, 5 and 6 followed a similar pattern 

by eluting faster with increasing salt concentration.  However, there was a slight decrease in the 

retention of peak 6 compared to peak 4 and 5.  The retention of peak 2 showed the most complex 

relationship to the change in the salt concentration of mobile phase A was to widen the 

separation window by decreasing retention of the earlier eluting components and by increasing 

retention of the late eluting components. From a practical perspective it is apparent that the salt 

concentration of mobile phase A is a useful parameter to increase chromatographic resolution 

and the overall peak capacity of a separation of the large biomolecules used for this study.  The 

improved separation of these large biomolecules at salt concentrations less than 1 M is a key 

difference compared to the separation of small proteins, which were reported to be poorly 

behaved under similar conditions which was attributed to conformational instability 2.  One 

measure of protein conformational stability is their thermal transition temperatures.  For 

example, the melting temperature of α chymotrypsinogen A used in an earlier investigation of 

hybrid HIC is approximately 50°C at pH 7 10, whereas, the thermal transition of a therapeutic 

mAb is typically in the range of 65-70°C 11 indicative of higher conformational stability.  In 
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addition to improving peak capacity, mobile phases with lower NH4OAc concentration generally 

provide an increase in analyte response by ESI mass spectrometry 12. 

This observed increase in retention as the salt concentration of mobile phase A decreased 

suggests that there could be more than one mechanism of retention. While the observed greater 

retention at the reduced salt condition is consistent with ionic interactions with the stationary 

phase, the poly (alkyl aspartimide) stationary phase is reported to have a very low ion exchange 

capacity 13.  It is also important to recognize that even at the lowest salt concentration (0.5M) 

used in this study, there is likely more than sufficient ionic strength to suppress ionic interactions 

with the stationary phase.  Additionally, if ion exchange was occurring it would likely be 

manifested by distortion of the chromatographic peaks, which was not observed. 

We also investigated the possibility that the increase in the retention under low salt 

conditions was due to the increase in the hydrophobicity of the biomolecule resulting from 

conformational changes. In general, a denatured or partially unfolded molecule has longer 

retention compared to a native conformation due to exposure of previously buried hydrophobic 

residues.  If there is any denaturation due to the organic solvent then a change in the retention 

time is expected.  Examining the results from the experiment (Figure 2.5), which was conducted 

for the purpose of understanding the effect of flow rate on chromatographic efficiency, it is 

possible to gather some information on kinetics of molecular unfolding in the presence of an 

organic solvent.  In this experiment, the gradient time and flow rate were proportionally adjusted 

to maintain a constant gradient volume.  The result was that each component eluted under 

identical mobile phase conditions despite retention times varying by a factor of 10.  If protein 

unfolding were occurring on the time scale of the chromatographic experiment, it is expected 

that the retention volume would increase with increasing time on column. While it is widely 
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assumed that conformational changes are instantaneous, as described by Sethuram’s et. al., 

conformational changes in the presence of hydrophobic surface can be faster (less than a minute) 

or slower (up to 1200 minutes) 14. Since no shifts in retention volume were observed (Figure 

2.5), it can be concluded that under the conditions of 1 M NH4OAc, if protein unfolding is 

occurring it is proceeding either much faster or slower than the chromatographic time scale as 

observed by Chen et al 2, 9. 

To further evaluate conformational changes in low salt solutions, intrinsic fluorescence 

experiments were carried out with 0.5 M and 1M NH4OAc mobile phases using  biomolecule 6 

(fusion protein) to compare the ratio of tryptophan fluorescence emission at 330 nm and 350 nm 

15-16.  Biomolecule 6 was selected for this study because it is the latest eluting component and 

therefore exposed to greatest MeCN concentration. A mobile phase containing 0.5 M NH4OAc 

was selected because it gave longest retention time and 1M was the suitable control yielding 

retention time similar to the higher salt concentration mobile phases. The data showed that there 

was no change in the ratio (Table 2.1), which indicated that there were no significant 

conformational changes to the biomolecule in the regions where there are tryptophan residues.  

To further evaluate conformational changes we also conducted electrospray mass spectrometry 

experiments using the same chromatographic conditions that were used for intrinsic 

fluorescence.  It was reported that the appearance of electrospray mass spectra of a protein under 

hybrid HIC conditions is similar to the spectra that was obtained in folded form rather than 

denatured form 2.  The ESI desolvation temperature was optimized to generate mass spectra 

where the charge state distribution is centered at high m/z which is consistent with native or near 

native protein structure.  For comparison, we also collected mass spectra at much higher 

desolvation temperature to produce a spectrum of the denatured protein where the charge state 
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distribution centered at significantly lower m/z.  Under the non-denaturing MS conditions, a 

statistical significant difference in the charge state distribution was observed between the 0.5M 

and 1M conditions. However, the minor changes to the average change state distribution that 

were observed (Figure 2.4) were may be due to the differences in the solvent conditions used. 

This data may not be sufficient enough to conclude that it is due to conformational changes.  For 

example, the change in charge state distribution may be due to the impact of the change in salt 

concentration on the electrospray ionization process rather than conformation. It has been well 

established that mobile phase variations can lead to minor changes in the appearance of the mass 

spectra.  For example, in a recent article by Ding 17, it was reported that the addition of a small 

percentage of a basic additive to the mobile phase can act as a charge stripping agent and 

significantly alter the charge state distribution. 

 

Table 2.1. Impact of Mobile Phase Salt Concentration on Biomolecule 6 

 
Intrinsic fluorescence 

Salt Concentration 330 nm 350 nm Ratio of 330 nm /350 nm 

 Max Absorbance (eu)  

1.0 M 1 9192.9 9182.5 1.001 

0.5 M 2 5345.6 5339.6 1.001 

2.5 M 3 10131.6 10156.2 0.998 

 
Table 2.1. Impact of mobile phase salt concentration on mAb 6 conformation. 1) MP A: 1M 
NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 50% ACN at pH 7.0, 2) MP A: 0.5 M 
NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 50% ACN at pH 7.0, 3) MP A: 2.5 M 
NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 50% ACN at pH 7.0). Flow rate 1 mL/min. 
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Even though these non-chromatographic experiments provided some basic information 

about conformation changes under HHIC chromatographic conditions, more techniques such as 

Circular Dichroism and protein NMR are required to gather details to confirm the structural 

changes in a biomolecule. Despite the inconclusive findings related to conformational change, 

the ESI experiments did provide a useful demonstration of the improved signal intensity that 

results from conducting analyses at lower NH4OAc concentration.  The spectral intensity of the 

most abundant charge state increased by approximately a factor of five with the use of 0.5 M 

NH4OAc compared to 1 M (Figure 2.4). 

Considered together, the results from the analyses by intrinsic fluorescence and ESI mass 

spectrometry suggest that extensive protein unfolding has not occurred or that it only occurs 

when the biomolecule is in the presence of the hydrophobic stationary phase 18-19.  If the 

biomolecules rapidly assume a folded conformational state after elution, the ability to detect the 

changes by solution analysis would be confounded. A possibly more likely explanation of the 

results from conformational analysis is that the changes are too subtle for detection by either 

fluorescence or ESI mass spectrometry but never the less significantly impact chromatographic 

retention. A final possible explanation for the enhanced retention under low salt conditions is 

hydrophobic affinity effect 18, 20.  Unfortunately, a mechanism for hydrophobic affinity has not 

been determined.  It is possibly a distinct mechanism from HIC but it is also may be the same 

phenomenon of increased retention under low salt conditions resulting from protein unfolding. 

While the precise mechanism for increased retention of later eluting components under 

low NH4OAc conditions is not fully understood, the benefits of operating under these conditions 

include a widening of the elution window and the previously described enhanced response by 

ESI mass spectrometry.  It does appear however, that the NH4OAc concentration should be 
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tailored to the precise requirement of the intended separation.  For example if the requirement is 

to separate and quantitate only components 4 and 5, a higher salt concentration would provide 

better resolution despite the overall narrowing of the elution window observed for the separation 

of this six component mixture.  The behavior clearly demonstrates that the retention is not only 

dependent on the salt concentration but also highly dependent on the hydrophilic and 

hydrophobic nature of the individual biomolecule 21-24. 

 

 

 
Figure 2.2. Impact of salt concentration on the selectivity (MP A: different concentrations of 
NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 50% MeCN with an aqueous pH 7.0); Peaks 
1 through 6 are biomolecules used as a sample mixture. 
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Figure 2.3. Impact of salt concentration on retention (MP A: different concentrations of 
NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 50% ACN at pH 7.0)  
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Figure 2.4. ESI-MS conducted using mobile phase A with either 1 M or 0.5 M NH4OAc and 
mobile phase B consisting of 20 mM NH4OAc with 50% MeCN,  a) Desolvation temperature 450 
°C, MP A: 1M NH4OAc, b) Desolvation temperature 250 °C, MP A: 0.5 M NH4OAc, c) 
Desolvation temperature 250 °C, MP A: 1.0 M NH4OAc 
 

2.3.2 Role of linear velocity on the separation 

Another parameter that plays a major role in the overall separation is mobile phase linear 

velocity.  It not only has a significant influence on the efficiency, but also impacts the speed of 

the analysis.  To understand the effect of linear velocity on chromatographic efficiency and 

resolution, mobile phase flow rates of 1, 0.8, 0.5 and 0.1 mL/min were evaluated (Figure 2.5).  

Gradient run time was adjusted to maintain a constant gradient volume.  Based on experimental 

results, it was observed that when the flow rate decreased from 1 to 0.1 mL/min, there was 
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approximately a 30% increase in the peak capacity (Figure 2.6).  In addition, there were no 

significant change in the selectivity and a moderate increase in the resolution at the cost of a 

longer run time. The modest impact of linear velocity on peak capacity is somewhat surprising 

since the expectation is that large molecules will exhibit poor mass transfer resulting in a more 

significant loss of efficiency as linear velocity increases.  Even though lower flow rates may 

offer an increase in the peak capacity and provide enhanced resolution, a possible concern is that 

a longer run time with extended exposure to organic solvent may affect the conformation of the 

biomolecules.  As described previously unfolding could lead to an increase in the hydrophobic 

interactions with the stationary phase and results in longer retention times, or in the case of these 

experiments, longer retention volumes (retention time multiplied by flow rate).  However, as 

shown in Figure 2.5, decreasing linear velocity and increasing run time from 10 minutes to 60 

minutes did not impact retention volumes suggesting no change to molecular conformation due 

to the longer exposure to the organic solvent. Additional experiments using biophysical 

characterization techniques will provide more details to confirm the structural changes.  
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Figure 2.5. Impact of flow rate on relative retention time (MP A: 1M NH4OAc at pH 7.0 and MP 
B: 20 mM NH4OAc with 50% MeCN with an aqueous pH 7.0); Flow rates were 0.1, 0.5, 0.8 and 
1 mL/min. 
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Figure 2.6. Impact of linear velocity on peak capacity (MP A: 1M NH4OAc at pH 7.0 and MP B: 
20 mM NH4OAc with 50% MeCN with an aqueous pH 7.0). Linear velocities were 173, 866, 
1385 and 1732 cm/h with flow rates of 0.1, 0.5, 0.8 and 1 mL/min respectively. Peak capacity 
was calculated using equation: 1+ (Gradient Time/Average peak width@50%peak height) 
 

2.3.3 Gradient steepness 

Chromatographic peak capacity is also strongly influenced by gradient steepness.  The 

effect of gradient steepness was evaluated by conducting chromatographic separations at seven 

different gradient times (5, 10, 15, 20, 30, 40 and 50 minutes).  Results in Figure 2.7 showed that 

increasing the gradient time up to 30 minutes slightly improved the peak capacity but with no 

significant increase with longer gradients.  This observation confirms that the largest impact on 

peak capacity occurs from the initial increases of gradient time.  For example, changing the 

gradient time from 5 to 10 minutes increased the peak capacity by 10% while increasing from 10 

min to 30 minutes produced only a further 7% improvement. 
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Both linear velocity and gradient time are shown to impact peak capacity and are easily 

modified chromatographic parameters.  With consideration to a reference point of separations 

conducted at 1mL/min with a gradient time of 10 minutes (added references) our results 

demonstrate that decreasing flow rate to 0.5 mL/min (Figure 2.6) (with a proportional increase in 

the gradient time to 20 min) offers a greater increase in peak capacity compared to increasing the 

gradient time alone (Figure 2.7).  In addition, use of a lower flow rate is a more favorable 

condition for MS analysis due to the expected increase in sensitivity. 

 

 

 
Figure 2.7. The impact of gradient time on retention. Gradient times were 5, 10, 20, 30, 40 and 
50 minutes and 42, 83, 167, 250, 333 and 417 column volumes respectively. 
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2.4 Conclusion 

In this study we evaluated the impact of elution parameters on the hybrid HIC separations 

of mAbs and other large therapeutic biomolecules on a previously described stationary phase that 

is more hydrophobic than typical used for HIC separations.  This research demonstrated that an 

adequate separation of mAbs and related molecules is achievable using a salt concentration (0.5 

M) that was lower than what was previously reported as the lowest concentration required for 

satisfactory chromatographic performance for a set of model proteins.  Furthermore, the study 

showed the analytical utility of low salt conditions to widen the chromatographic elution window 

through the earlier elution of the hydrophilic analytes combined with the unexpected later elution 

of the more hydrophobic analytes.  Results from intrinsic fluorescence and MS of the eluted 

biomolecules suggested that they were in a largely folded state despite the use of conditions that 

employed a low salt mobile phase containing acetonitrile (referred as either MeCN or ACN) 

which might be expected to cause denaturation especially in the presence of a hydrophobic 

stationary phase.  However, there are various orthogonal and conformational analysis techniques 

that can provide more details to confirm the conformation changes under these chromatographic 

conditions. In addition to widening the elution window, another advantage of the use of a lower 

salt mobile phase was an approximate fivefold increase in the ESI-MS response of the analytes. 

Since compatibly with on-line MS analysis is one of the main drivers for the development of 

hybrid HIC, the increase in MS response represent a significant advance.  Other elution 

parameters were also studied with the impact of linear velocity and gradient steepness generally 

followed expected trends with the relatively modest loss of efficiency at the highest linear 

velocity being noteworthy. 
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Chapter 3 : Hybrid Mode of Hydrophobic Interaction 
Chromatography of Monoclonal Antibodies and Related 
Biomolecules: Influence of Mobile Phase pH, Organic Modifier and 
Temperature on Poly (alkyl aspartamide) Silica Columns 

3.1 Introduction 

Factors affecting protein adsorption in HHIC systems include the properties of mobile phase 

such as buffer pH, temperature, organic modifier and stationary phase in addition to salt type and 

concentration. Out of all these factors, salt concentration and salt type 1-7 effects have received 

the most attention. In HIC, Alberty et al. 8 derived a relationship to correlate how variations in 

buffer pH, temperature and salt concentration can induce Gibbs energy changes. In his work he 

concluded that the chromatographic affinity is driven by the change of Gibbs energy, which is 

related to the number of water molecules released upon protein binding. Based on this number, 

the effect of pH and temperature can be estimated. Xia et al. 9 found that when the buffer pH is 

close to the isoelectric point of the protein, more water is released during adsorption. Baumann et 

al. 10 conclude that pH-induced reversible structural changes and protein reorientation upon 

binding can increase the dynamic binding capacity affecting retention process.  

An organic modifier is required to elute biomolecules (Refer to Section 2.3) in a reasonable 

time frame when using poly (alkyl aspartamide) silica columns with mass spectrometry 

compatible salts such as ammonium acetate in low concentrations. Organic solvent helps to 

disrupt hydrophobic interactions between the molecule and stationary phase to promote elution. 

Organic solvent is known to denature biomolecule conformation and the details will be discussed 

in Section 3.3.2. However, the impact of the organic solvent is highly dependent on the type and 

the percentage of organic solvent and also on the properties of the biomolecule itself. Along with 

mobile phase properties, column temperature also contributes to the elution.  In conventional 
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HIC the effect of temperature on solute binding columns has been previously examined and it 

was found that retention is an entropically driven process at low temperature and an enthalpically 

driven process at high temperature. However, temperature effect on poly (alkyl aspartamide) 

silica columns has not been studied and is yet to be evaluated. Our research will help to 

demonstrate the effect of mobile pH and, organic modifier and will also provide insights on the 

impact of temperature on the separation. 

 

3.2 Experimental Details 

Details on the chemicals, HIC columns, mAbs, HPLC system and chromatographic 

conditions, refer to Section 2.2.  Acetonitrile, isopropyl alcohol and methanol was purchased 

from Sigma Aldrich, 0.1N ammonium hydroxide was purchased from Ricca Chemicals, and 

glacial acetic acid was purchased from Sigma Aldrich and were used to adjust the pH of aqueous 

mobile phases before adding the organic solvent. Unless otherwise specified chromatographic 

separations were performed at 25°C with initial 0.5 minutes hold and a 10 min linear gradient 

going 100% mobile phase A to 100% mobile phase B. 1 M NH4OAc was used as mobile phase 

A and 20mM NH4OAc (overall) with 50% MeCN as mobile phase B.  Mobile phases were 

prepared as pH range of 5.7 - 7.3. Isoelectric points (pI) of mAb 1 was 8.3, mAb2 was 7.2, mAb3 

(NIST mAb) is 9.2, mAb4 is 9.5, mAb5 is 9.0 and FC protein is 7.7   

 

3.3 Results and Discussion 

In this research, mobile phase parameters such as pH, temperature, organic type and 

content were studied to evaluate the retention and selectivity on a mixture of six biomolecules 

using poly (alkyl aspartamide) silica columns. Poly PENTYL A column was selected for this 
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research after a brief evaluation of available stationary phases such as PolyPROPYL A, 

PolyBUTYL A, PolyHEXYL A and PolyHEPTYL A columns (Figure 3.1). This column was 

found to be most suitable for the separation of selected biomolecules and also in agreement with 

recent reports 7, 11.   

 

 
 
 
Figure 3.1. Initial evaluation of chromatographic separation using different poly (alkyl 
aspartamide) silica columns 
 

3.3.1 Effect of mobile phase pH on the retention 

HIC is strongly influenced by the pH of the solution, however, the effect of pH in HIC is not 

completely understood 12-15. In most cases, it was observed that an increase in pH can reduce the 

hydrophobic interactions between molecules and the hydrophobic groups of the stationary phase, 

may be as a result of increased titration of charged groups, leading to the increased 

hydrophilicity promoted by the change (increase) in the protein charge 5, 12. Hjerten et al. 16 

reported that basic protein such as lysozyme displayed high binding when the buffer pH was 

close to its pI and human serum albumin capacity factor decreased as the pH increased. The net 
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charge on the molecule is affected by pH of its surrounding environment and can become more 

positively or negatively charged due to the gain or loss, respectively, of protons (H⁺). Therefore, 

depending on the pH, the protein’s net charge and its conformation can change significantly 9-10, 

16-18. It is well established in the literature, that hydrophobic interactions are stronger when 

solution pH is close to the isoelectric point of the protein 17. The reason is, near its isoelectric 

point the net charge of the protein will become zero and the electrostatic repulsion between the 

protein molecules becomes small, favoring a closer packing on the adsorbent surface 17.  

In general, the commonly used pH conditions for larger biomolecules are in the range of 

physiological pH which is in between 6.4 and 7 6. However, most of the biomolecules stored in 

the range pH 5.7 - 7.3, because they exhibit high chemical and physical stability. Keeping this in 

mind, in this research, pH range was evaluated between 5.7 and 7.3, while all other 

chromatographic parameters were kept constant (Figure 3.1). The results demonstrated that 

peaks 1 and 2, where the pIs are close to 8, retained longer and exhibited low resolution at low 

pH (5.7) and eluted faster with increased resolution as the pH increased to 7.3. In general, when 

the pH is less than pI, a molecule contains positive charge. The increased protein retention at low 

pH could be due to partial denaturation 19 or disruption in both ionic and hydrophobic 

interactions. This scenario will result in stronger adsorption onto stationary phase. Based on 

earlier research 18, it was explained that the ionization state of amino acids in the contact surface 

area influences the strength of the hydrophobic interaction. Hence, not only hydrophobicity, but 

hydrophilicity also affects HIC retention. In conclusion, there is a strong influence of the buffer 

pH on the adsorption strength resulting from both configurational changes and electrostatic 

effects 20. As the pH increases and gets close to pI of the molecule, the net charge of the 

molecule gets closer to 0, causing a decrease in electrostatic interactions. As a result, only 
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hydrophobic interactions of the molecule play a role and it is easy for organic to disrupt these 

interactions by causing earlier elution.  

In this research, for peaks 1 and 2, as the pH increased from 5.7 to 7.3, there was a decrease 

in peak retention and increase in peak resolution. The reason for this observation may be similar 

to what was described 9 as the change in pH impacts the total number of released water 

molecules upon protein binding. This number increases as the buffer pH approaches the 

molecule’s pI and decreases when the pH was away from its pI. This influence impacts the 

selectivity of the biomolecule on HIC systems 9. A very similar trend was observed for peak 3 

(NIST mAb), where the pI is 9.2. A decrease in the retention time occurred when the pH 

increased to pH 7.3. Peaks 4 and 5 have similar pI values as peak 3 but there was no major shift 

in the retention observed. However, there is a slight decrease in the resolution between these two 

peaks. There was an interesting observation made with peak 6, where the pI of the molecule is 

similar to peak 2. The change in the retention was completely negligible. Hjertén et al. observed 

that the retention of various test proteins changed more drastically at pH values above 8.5 and/or 

below 5 than in the range pH 5 – 8.5 16. The shift in retention caused by the pH is highly 

dependent on the biomolecule. The pI and the number of charged amino acid residues in the 

biomolecule have an impact 5. Therefore, although the pI of the mAbs is typically higher than 

biological pH, the effect of buffer pH may vary depending on the molecule properties such as the 

available amino acids in the contact surface area and the number of the water molecules released. 

Although there has been an explanation for the impact of pH on the retention mechanism, it is 

very complex to predict the retention process as there are multiple parameters simultaneously 

changing during the gradient run. As described in previous findings and the outcome of this 
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research, pH may not be a critical parameter 6 but it has an impact on selectivity (Figure 3.2) and 

peak capacity (Figure 3.3). Hence, it can be used to optimize the separation of biomolecules.  

 

 

 
Figure 3.2. Effect of mobile phase pH on retention and selectivity 
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Table 3.1. Changes in the retention factor in different mobile phase pH 

 

 Mobile phase pH 

Peaks 5.7 6.0 6.3 6.5 7.0 7.3 

mAb1 20.7 18.0 16.0 15.2 14.0 13.3 

mAb2 24.1 22.5 21.2 20.8 19.8 19.3 

NIST 30.9 29.3 28.1 27.8 27.3 26.9 

mAb4 36.3 36.2 36.1 36.4 36.8 36.3 

mAb5 41.3 40.7 40.1 40.2 40.3 39.6 

mAb6 47.4 46.8 46.4 46.8 47.2 46.5 

 

 

 
 
 
Figure 3.3. Effect of mobile phase pH on the peak capacity 
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3.3.2 Effect of organic modifier concentration on the retention 

Adding a small portion of organic solvent will contribute to disruption of hydrophobic 

interactions in HIC, resulting in elution of bound molecules.  However, the impact of the organic 

solvent depends on the properties of the organic solvent and the molecule as well. In general, 

molecules with α-helix seems to be more stable compared to molecules with β-sheets. The reason 

for this is that β-sheets have more solvent accessibility compared to α-helix, therefore, molecules 

with β-sheets tend to denature faster 21. In the absence of water, proteins in hydrophobic solvents 

were thought to retain their native structure as a result of kinetic trapping 22, which is due to 

stronger hydrogen bonding between the protein atoms and a more rigid structure. In hydrophobic 

water-immiscible solvents, the available water will tend to stay at the protein surface as a result 

of the solvophobic and hydrophilic nature of the protein surface 23. In 1999, Klibanov indicated 

that a small amount of water (1% v/v) will have significant impact on increase of catalytic 

activity because water plays an important role in the structure and dynamics of the protein 24. On 

the other hand, polar solvents such as dimethyl sulfoxide [DMSO], dimethylformamide [DMF] 

and, formamide can easily strip water from protein surface and compete strongly for hydrogen 

bonds between protein atoms by denaturing to a significantly unfolded state of the molecule 25.  

However, due to the presence of a hydrophilic component, alcohols moderately compete for 

amide hydrogen bonds and will disrupt tertiary structure leaving secondary structure interactions 

intact 26. 

Methanol is a commonly used organic solvent for chromatographic separations. The 

assumption is, due to its polar protic nature it works as a denaturant and increases the 

concentration of possible folding intermediates 26, hence,  it may not be a good choice for the 

separation. Previous experimental results and theoretical studies have shown that the addition of 
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methanol to aqueous protein solutions stabilizes (or even induces) the α-helical structure. 

However, it denatures other protein structures, caused by the accumulation of methanol near the 

protein surfaces 27-29. This behavior induces the expansion of protein structure (Figure 3.4) 

possibly by the reduction of hydrophobic effects. Simultaneously, the replacement of water 

molecules from the protein surface decreases the hydrogen bonding between water and the 

protein and increases the protein-protein hydrogen bonds 30. Although disruption of water shell 

in the presence of methanol increases the exposure of the protein to solvent. Combination of 

these effects locally decrease the polar interactions between the solvent and the protein causing 

an increase in the possibilities for secondary structure formation 30.  However, the effect of 

methanol on protein structure depends on the sequence and the position of the amino acids. 

Therefore, it is a combination of interdependent direct (preferred binding of methanol) and 

indirect (e.g., reduced protein-water hydrogen bonding) effects 30. Based on the reference, the 

influence of methanol depends on multiple factors such as the amino acid sequence, the 

environment of the biomolecule and also the balance between the interactions. Combination of 

all these effects will determine whether methanol tightens or loosens the protein structure 30, 

which may act as a protein denaturant. Various studies were conducted over a wide range of 

water/organic solvent mixtures and it was observed that proteins in solvents containing different 

proportions of water and organic solvent showed very different behavior than that observed in 

either water alone or neat organic solvent 22.  
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Figure 3.4. NMR structure of BBA5 in a) water, and b) MeOH/water solution. The side-chains of 
hydrophobic residues participating in the hydrophobic cluster in water are indicated 30.  

(Reprinted with the permission of ACS) 
 

 

The effect of MeCN-water mixtures on the solubility of amino acids in lysozyme 

indicated very similar observations as with other organic solvents. They tend to weaken the 

hydrophobic interactions by enhancing the peptide-peptide hydrogen bonding leading to the 

denaturation of proteins. Circular dichroism confirmed that the confirmation of lysozyme 

remained native up to 40% of MeCN 31. 2016 Bobaly et al. 32 performed experiments to evaluate 

the effect of MeCN using commercial HIC columns. MAbs with low or moderate hydrophobicity 

demonstrated longer retention with lower percentage of MeCN and lower retention was observed 

as the percentage of MeCN increased, whereas for most hydrophobic mAbs, the retention 

decreased continuously as the concentration of MeCN increased. Longer retention indicated 

some possible structural changes depending on the proportion of the MeCN, which impacts the 

confirmation and contact area of the proteins with the stationary phase. Larger proteins exhibit 

deviations from the linear solvent strength (LSS) retention mechanism in RPLC mode indicating 
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potential conformational changes in the molecule 33-34. In HIC mode the effect of organic 

depends on the aprotic nature because some mAbs showed decreasing retention in previous 

studies (at ambient temperature), when the amount of IPA (protic solvent) in the mobile phase 

increased 6. Bobaly et al. 32 mentioned that protic solvent (IPA) can be better solvent than aprotic 

solvent (ACN) to minimize the denaturation when used up to 10-15%. However, the effect of 

organic will depend on the nature of the molecules. Small percentage of organic solvent may 

have very minor effect on conformation changes but will have significant effects on folding 

thermodynamics 35.  

Organic modifier in the mobile phase plays a significant role in HIC in selectivity and 

resolution. As per earlier research findings 3-4, 6-7, 11, 32, 36-37 small amount of organic in mobile 

phase B is useful and will dramatically improve the separation without impacting the 

conformation of the biomolecule. HIC separation using poly (alkyl aspartamide) silica columns 

require some percentage of organic solvent to elute molecules using low concentration of 

ammonium acetate 4. In earlier research it was mentioned 4-6, 32 that in HIC separation, alcohols 

(specifically isopropanol) improved selectivity and it also been reported that in many cases 

isopropanol was a less denaturing solvent than MeCN when temperature kept below 40°C 32.  

In this research a sequence of experiments were conducted separately to evaluate the 

impact of different percentages of methanol, isopropanol and MeCN to compare the selectivity 

and separation. Of the molecules that were used in this research, MeCN provided better 

separation and selectivity as compared to IPA and MeOH when ammonium acetate gradient was 

used (manuscript). MeOH and isopropanol percentages were adjusted to match MeCN solvent 

strength and the impact of MeOH was evaluated using 40%, 62.5% and 75% concentrations in 

mobile phase B. There was no elution observed with 40% and partial elution was observed with 
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62.5% and 75% MeOH (Figure 3.5). This may be due to the conformation changes and result in 

interactions with the stationary phase. Similarly, 15% and 25% IPA (Figure 3.6) in mobile phase 

did not provide an adequate separation. However, 40% IPA enables the separation of variants 

which was not observed with MeCN. Use of IPA can be further evaluated to gain knowledge on 

separating variants. This important observation can lead to new opportunities of quantifying 

variants of a mAb.   

 

 

 
Figure 3.5.  The effect of methanol on the separation of six mAbs 
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Figure 3.6. The effect of IPA on the separation of six mAbs 

 
 

To study the workable range of MeCN, a series of experiments were carried out (Figure 

3.7) by varying the concentration (25% to 75%) in mobile phase B while all other parameters 

were kept constant. Results of mobile phase B with 25% MeCN showed that more hydrophilic 

molecules retained longer compare to higher concentrations of MeCN and no elution was 

observed for more hydrophobic molecules indicating that the MeCN concentration is not enough 

to disrupt the hydrophobic interactions to promote elution. Mobile phase B with 35% MeCN 

contributed to elute the peaks, but a wider elution window was observed. This condition can be 

effectively utilized to increase the peak capacity.  In mobile phase B with 50% MeCN, the 

separation was not only adequate but also earlier elution was observed. As MeCN percentage 

increased from 50% to 75% the trend continued with good selectivity (Figure 3.7) and increase 

in peak capacity (Figure 3.8).  In addition, peaks appeared sharper than mobile phase B with 

50% MeCN demonstrating similar peak recovery. As there was neither co-elution nor peak 

splitting observed, it was assumed that molecules retained their mostly folded state or native-like 
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conformation even with 75% MeCN in mobile phase B. However, to confirm the conformational 

changes more experiments are required. In these experiments, it was evident that peaks retained 

longer with an increase in the salt concentration (higher mobile phase A percentage), which is an 

expected conventional HIC retention behavior.  

 

 

 
Figure 3.7. Effect of MeCN on the separation of six mAbs 
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Figure 3.8. Increase in peak capacity with an increase in percentage MeCN in mobile phase B in 
the presence of 1M salt in mobile phase A 
 
 
3.3.3 Effect of column temperature on the retention 

The temperature effect on HIC performance has been very well studied 9, 16, 38-41.  In 

general, in HIC, the retention factor, k, increase with an increase in temperature 38, 42 and 

lowering the temperature enhances the protein elution 38. It is well known that in the folded state 

protein retention is less in HIC compare to an unfolded state 43. This is because in an unfolded 

state, the increase in the retention is due to the increase of hydrophobic interactions as a result of 

the temperature-induced conformational changes of biomolecules and/or related to the increase 

in the hydrophobic contact area upon binding to the chromatographic surface 43-45. Hence, 

retention is nonlinear with temperature due to protein conformational changes, which leads to an 

increase in the conformational entropy at higher temperature 42-43.  Wei et.al  42 proved that the 

total moles of solvent released at the contact region between the stationary phase and the solute 
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interface when 1 mole of solvated solute is absorbed is not same for all the molecules. This 

number highly depends on the conformational stability of the molecule. The conformational 

change of proteins will contribute to the increase in hydrophobic contact area between the 

molecule and the stationary phase. With that, it was confirmed that the increase in the solvent 

depends on two factors, one is the changes in the number of water molecules surrounding the 

molecule due to conformational changes of molecules, and the other is a result of an increase in 

hydrophobic contact area between the protein and the stationary phase. On the other hand, it was 

clear that the adsorption is accompanied by the release of a large number of water molecules. 

This supports the expectation of an entropically driven process in which the release of a large 

number of ordered water molecules provides the driving force for adsorption. This confirmation 

supports Hjertén et. al  findings 38. 

 

At low temperatures large and positive enthalpy and entropy changes were observed. In the 

literature 41, 46-48, HIC is an entropy-driven process and the Gibbs free energy is given according 

to the Eq. (1).  

 
∆G = ∆H - T∆S     (1) 

 
Since ∆H may be a small positive or negative value, ∆G is controlled by a positive entropy 

change and hence increases with an increase in temperature. According to El Rassi, in HIC the 

retention factor k’ increases with increasing temperature according to the below equation 40: 

 
ln k’ = ln φ - ∆G/RT          (2) 
 

Where R is the gas constant, φ is the phase ratio and T is the absolute temperature. However, 

based on the impact of temperature on the conformational state of different biomolecules and on 
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their solubility in aqueous solutions, an opposite behavior can be observed in protein retention. 

In HIC system, protein unfolding is affected by hydrophobic and static electronic force between 

protein and stationary phase beside the force of the interior of the molecule as temperature 

increased 42. Enthalpy–entropy compensation relationship can be used to explain HIC retention 

process 47, 49.  Even though the effect of temperature in HIC is not straightforward, this parameter 

can be used to promote elution by weakening the interactions and separating proteins under mild 

conditions without denaturing the molecule 40.  

To demonstrate the effect of temperature using poly(alkyl aspartamide) silica columns 

and assess the retention in HHIC, an experimental study was designed by varying temperatures 

in the range of 20°C and 30°C, with 25°C being a control for this research. The temperature 

limitation for these columns is 35°C. The columns used in the study were PolyBUTYL A, 

PolyPENTYL A, PolyHEXYL A and PolyHEPTYL A.  No significant difference was observed 

on the retention going from 20°C to 25°C using PolyPENTYL A columns, therefore 20°C was not 

evaluated for PolyBUTYL A, PolyHEXYL A and PolyHEPTYL A columns. However, as the 

temperature increased from 25°C to 30°C (Figure 3.9) unlike conventional HIC, an earlier elution 

was observed for PolyPENTYL A column (Figure 3.10) and the same trend was observed in all 

other columns. This is an atypical behavior compared to what was described for conventional 

HIC methodology. The hypothesis for this behavior is that increase in temperature may be 

effecting in the diffusion of the molecule through the stationary phase or in lower temperatures 

hydrophobic effect becomes weaker, resulting in early elution 42, 50. This experiment 

demonstrated that overall there is no significant impact of separation of these mAbs at the range 

of temperatures 20°C - 30°C (Figure 3.10). 
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The aim of this research is to enhance the fundamental knowledge about the retention 

behavior of hybrid HIC using poly (alkyl aspartamide) silica columns by studying 

chromatographic parameters such as concentration of salt, pH, and organic solvent and 

demonstrate the effect of temperature with no intention of evaluating thermodynamic model. The 

results generated in this research based on chromatographic parameters, such as concentration of 

salt, pH, and organic solvent are not suitable to assess thermodynamic properties such as entropy 

and enthalpy. Therefore, a thermodynamic model was out of the scope of this research.  

 

 

 
Figure 3.9. Effect of temperature on PolyPENTYL A column 
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Figure 3.10. Changes in the retention factor with the column temperature using PolyPENTYL A 
column. 
 

 

3.3.4 Effect of Salt in Mobile Phase B (20mM ammonium acetate with 50% 
MeCN)  

Salt concentration in mobile phase A plays a significant role in molecule retention on HIC 

methodology. In this research the separation was based on a decreasing salt gradient with   

20mM salt in mobile phase B which is a very low concentration. With a closer look it is obvious 

that all six peaks eluted before 5 minutes in the presence of half the amount of mobile phase A 

where the concentration is about 500 mM. The assumption is, in the presence of high salt (500 

mM) in mobile phase A and low salt (~10 mM) in mobile phase B, there may not be a great 

impact on the elution and separation. To study the importance and measure the role of salt 
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concentration on mobile phase B, we performed experiments (Figure. 3.11) using mobile phase 

A with 1 M and mobile phase B with pure water and 50% MeCN in water (no salt).  

The results confirmed that as described in section (2.3) organic solvent is required for the 

elution of the peaks using PolyPENTYL A column when used with low concentrations of 

ammonium acetate as mobile phase A. It was evident that the separation was very similar (Table. 

3.2) with and without 20 mM salt present in mobile phase B. Therefore, it was clear that the low 

salt that achieved through the gradient steepness may be low enough to rebuild the hydration 

shell around the biomolecule and organic solvent will help to break hydrophobic interactions by 

promoting the elution.  This experiment confirmed that an adequate chromatographic separation 

can be achieved using 1M ammonium acetate as mobile phase A and mobile phase B with or 

without 20mM ammonium acetate (overall) with 50% MeCN using PolyPENTYL A column.  

 

 
 
 

Figure 3.11. PolyPENTYL A column with 1000 Å and 3 um: Evaluation of chromatographic 
separation (MP A: 1 M NH4OAc at pH 7.0 and MP B:  water, water with 50% MeCN and 20 mM 
with 50% MeCN @ an aqueous pH 7.0) 
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Table 3.2. Comparison of mobile phase B using PolyPENTYL A column with 1000 Å and 3 um 
particle size: 1 M ammonium acetate as mobile phase A and 50% of MeCN with and without 20 
mM ammonium acetate as mobile phase B 
 

Mobile phase 
composition 

Peak 
name 

Tailing 
Factor Resolution Retention 

Factor Selectivity Peak 
Capacity 

1M_20mM50%MeCN 

mAb1 
 

1.05 NA 16.1 NA 

76 

mAb2 1.17 3.93 28.1 1.75 

NIST 1.17 2.37 34.2 1.22 

mAb4 1.24 3.08 40.6 1.19 

mAb5 1.11 1.96 44.1 1.09 

mAb6 1.12 5.99 54.9 1.25 

1M_water50%MeCN 

mAb1 1.05 NA 15.9 NA 

71 

mAb2 1.15 3.94 27.9 1.76 

NIST 1.19 2.31 33.9 1.22 

mAb4 1.23 3.06 40.2 1.19 

mAb5 1.14 1.91 43.6 1.09 

mAb6 1.10 5.88 54.6 1.25 
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3.4 Conclusion 

The purpose of this study was to demonstrate the influence of chromatographic parameters 

that impact selectivity and retention. Parameters such as mobile phase pH, organic type and 

percentage and temperature are shown to effect chromatographic performance. The research 

finding suggests that mobile phase pH variation in the range of 5.7 - 7.3 may not be a critical 

parameter to improve the separation for some mAbs, but for other mAbs the impact is 

significant. The reason for this behavior is, the changes in the pH will change the charge on the 

molecule due to the ionization of acidic groups.  Hence, it is worth to evaluate mobile pH to tune 

the selectivity using poly (alkyl aspartamide) silica columns.  

It was demonstrated that an organic solvent has a significant impact on the elution using 

HHIC technique due to the use of longer alkyl chains in stationary phase in the presence of low 

concentrations of NH4OAc. In this research, different organic solvents and their percentages in 

mobile phase B showed a significant difference in selectivity. The data proved that MeOH 

cannot provide adequate elution for the selected mixture of biomolecules and to provide 

adequate separation, at least 35% MeCN is required for acceptable separation. 40% IPA 

demonstrated complex chromatogram with multiple peaks for each component, which appears it 

has the capabilities to separate variants. This observation can be further evaluated. It was well 

established that in conventional HIC along with mobile phase parameters, temperature plays a 

major role. Unlike conventional HIC, in HHIC with poly (alkyl aspartamide) silica columns 

increasing temperature from 25°C to 30°C showed an early elution which is an atypical HIC 

behavior. Based on this observation, temperature may not be a critical parameter but may 

contribute to increase the peak capacity.  
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The experiment to assess the importance of salt in mobile phase B confirmed that using pure 

water as mobile phase B was unable to elute biomolecules from the column. However, small 

percentage of MeCN in mobile phase B with or without 20 mM ammonium acetate provided 

adequate separation with little or no distinguishable differences. The results confirmed that salt 

in mobile phase B does not play a major role in biomolecule separation. 
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Chapter 4 : Hybrid Mode of Hydrophobic Interaction 
Chromatography of Monoclonal Antibodies and Related 
Biomolecules: Impact of Stationary Phase and Its Interplay with 
Mobile Phase Parameters 

4.1 Introduction 

Protein conformation plays a significant role on chromatographic behavior in protein 

chromatography 1.  Structural changes in the secondary, tertiary or quaternary structure can have 

a major impact on retention, peak width and peak shape 1-2. In addition to mobile phase 

conditions, stationary phase ligands play a significant role and result in structural modifications 

which can lead to changes in the retention behavior. Strong protein-surface interactions can force 

partial exposure of the molecule hydrophobic interior 3. The reorientation of the molecule is 

required to achieve optimal interaction between the hydrophobic groups and the alkyl chains on 

stationary phase to adsorb on the chromatographic surface. These interactions will determine the 

nature of adsorption-induced structural changes 3. Protein adsorption at stationary phase surface 

is driven by the various interactions which exist between the protein and the groups that are 

attached to the stationary surface. The interactions that play a role in protein adsorption are 

hydrophobic interactions, electrostatic interactions, van der Waals interactions, hydrogen 

bonding, coordination bonding, and conformational entropy 4-6. Based on the knowledge 

acquired from the literature Yu et al. 7  illustrated protein behavior in a diagram (Figure. 4.1). 

Yano and Rabe et al. 6, 8 mentioned that when molecules exists as an individual entity and as an 

ensemble, the protein adsorption phenomena at solid surfaces is mainly driven by their attraction 

towards solid surfaces.  

The amino acids nature and diversity such as hydrophobicity/hydrophilicity or 

charged/neutral properties, leads to structural and functional complexity of the molecule. A 
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protein consists of both positive and negatively charged groups and exists in a secondary or 

tertiary structure. Protein folding patterns lead to a heterogeneous surface exhibiting specific 

properties such as hydrophobic/hydrophilic as demonstrated in Figure 4.2. Protein behavior at 

chromatographic surface becomes extremely complex due to this diversified surface properties 

and as a result, adsorption often results in an interplay of attraction and repulsion interactions.  

These interactions will drive to the protein preferred binding orientation, which can further effect 

mass transport and protein conformational transitions such as unfolding and refolding. Unfolding 

commonly occurs at the surface of the molecule due to complicated molecular interactions with 

surfaces, especially for unstable proteins. Hence, separation of unstable biomolecules may 

require more attention. Literature suggests either avoid using HIC technique 9-12 or to carefully 

select mobile phase solvents and its composition.  Other alternative is to add protein stabilizers 

13-15  as additives 16-18 in the mobile phase before performing the analysis 7.  Not only stationary 

phase surface properties but protein properties, and operating parameters such as mobile phase 

conditions, can drive all of these effects as well 7.  
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Figure 4.1. Protein behavior on chromatographic surface 7 

(Adopted with permission from Elsevier) 
 
 
 
 

 
 

Figure 4.2. Biomolecule with heterogeneous surface composed of hydrophobic/hydrophilic 
patches. The re-orientation and favored binding orientation of the molecule at hydrophobic 
surface 7  (Adopted with permission from Elsevier) 
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Figure 4.3. Biomolecule representing hydrophobic (Red) and hydrophilic (blue) areas 19 

(Adopted with permission from creativecommons.org) 
 

HIC stationary phases typically consist silica or a polymer bonded with alkyl or aryl 

groups that have relatively limited hydrophobicity, for example butyl, phenyl, ether, amide, and 

propyl (Figure 4.4). Straight chain alkyl groups exhibit hydrophobic character, whereas aryl 

groups show mixed-mode behavior where both aromatic and hydrophobic interactions can play a 

role in the adsorption process. Commercially available HIC stationary phases are non-porous and 

made with either silica (MAbPac HIC-Butyl) or polystyrenedivinylbenzene (Proteomix HIC 

Butyl) as a base material; however, there are also some porous and nonporous polymethacrylate-

based (TSKgel Butyl-NPR) particles available. These columns will offer separation using non-

volatile salts such as phosphates and sulfates, which are incompatible with online MS. Therefore, 

to extend MS compatibility Andrew Alpert synthesized new stationary phases (Section 1.8) 

which can provide the separation using volatile salts such as acetate and tartrate. 

Stationary phase properties such as base matrix, hydrophobicity, particle size and pore 

size have a major impact on the selectivity. Base matrix plays a significant role in the separation 

due to non-specific interactions such as electrostatic interactions, which can contribute to the 

selectivity.  Even though there is one alkyl group difference from propyl to butyl to pentyl, 

propyl has access only when high salt has disrupted the hydration layer around the molecule. 
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However, longer alkyl chains such butyl and pentyl can reach the hydrophobic patches even 

when the water molecules are intact with the biomolecule, showing an adequate selectivity. It is 

a well-established fact that smaller particles provide higher surface area, shorter diffusion paths 

and increased mass transfer kinetics which will contribute to the reduction in plate height and 

increase the efficiency. Similarly, the results from the columns with higher pore size demonstrate 

shorter retention times, higher resolution and better efficiency. Even though larger pore size 

provides low surface area, molecules can freely enter into these larger pores and can able to 

interact with the stationary phase alkyl chains. In addition to column properties, mobile phase 

properties such as buffer conditions can modify the apparent size of the biomolecule effecting 

the resolution. As a whole, not only stationary phase properties by itself have a profound impact 

on the selectivity but the interplay of both mobile phase and stationary phase can highly 

influence the separation of biomolecules. In general, for biomolecules, large pore size with 

shorter alkyl chain lengths provide better resolution.  



111 

 

 

 
Figure 4.4. Increase in the hydrophobicity of HIC stationary phases. 

 

HIC stationary phases are less hydrophobic compared to RPLC phases as the functional 

groups are sparsely distributed, resulting in mild interactions 20. Retention in HIC technique is 

very sensitive and highly dependent on the alkyl type, alkyl chain length and alkyl density along 

with mobile phase parameters demonstrated that salt type can have different effects on retention 

depending on the hydrophobicity of the protein to be separated and the hydrophobicity of the 

stationary phase itself. They also emphasized the importance of a well selected stationary phase 

and the salt (phase system) 20-21 on the retention and selectivity. In addition, it was demonstrated 

that the hydrophobicity of the stationary phase plays a significant role in maintaining native state 

conditions upon elution from the chromatographic column 1.   

HIC stationary phases made with poly (alkyl aspartimide) are more hydrophobic than 

typical HIC stationary phases. The impact of mobile phase parameters on these columns play a 

very similar role to conventional HIC columns. Due to their more hydrophobic nature and highly 

retentive behavior the non-typical HIC columns can provide adequate retention using low 
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concentrations of MS compatible salts.  There are several stationary phases available with 

different alkyl lengths such as propyl, butyl, pentyl hexyl, heptyl etc. with different pore size 

such as 1000 Å and 1500 Å and particle sizes of 2 µm, 3 µm, 5 µm and 12 µm. The selection of 

phase system and chromatographic conditions for therapeutic biomolecules are mostly subjective 

and chosen based on the trial-and-error approach 22. The separation and selectivity is highly 

dependent on the stationary phase and mobile phase parameters and as well as, the interplay of 

both parameters. As multiple parameters act simultaneously, the chromatographic behavior is 

considered to be complex due to the interdependency of multiple gradients such as dynamic 

changes in pH, salt and organic solvent. To demonstrate the capabilities and differences of these 

stationary phases, we studied the selectivity of different columns with different pore sizes and 

different particle sizes using the biomolecules which are used in this research.  

 

4.2 Experimental Details 

Details on the chemicals, HIC columns, mAbs, HPLC system and chromatographic 

conditions, refer to Section 2.2.  Unless otherwise specified chromatographic separations were 

performed at 25°C with initial 0.5 minutes hold and a 10 min linear gradient going 100% mobile 

phase A to 100% mobile phase B. 1 M NH4OAc was used as mobile phase A and 20mM 

NH4OAc with 50% MeCN as mobile phase B.  pH of all the mobile phases were measured for 

aqueous solutions. Experiments were performed using columns with different column parameters 

and also using mobile phases with different salt and organic concentrations. Please refer to the 

details in Tables 4.1 and 4.2. 
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Table 4.1. PolyBUTYL A and PolyPENTYL A column dimensions used in this research. 

 

Columns (50 x 2.1 mm) 1000 Å 1500 Å 

PolyPENTYL A 3 µm 2 µm 3 µm 2 µm 

PolyBUTYL A 3 µm - - - 

 

 

Table 4.2. List of mobile phase A and mobile phase B compositions. 

 
Mobile phase A 

@ pH 7.0 
Mobile phase B: % of MeCN in 20mM ammonium acetate @ pH 7.0 

1M 25% 35% 50% 65% 75% 

0.5 M X X X X X 

0.35 M X X X X X 

0.25 M X X X X X 
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4.3 Evaluation and Comparison of Retention in Different Poly (alkyl 
aspartamide) Stationary Phases 

The properties of these stationary phases result in different retention and selectivity. The 

effect of salt and organic concentration on the chromatographic separation of the molecules can 

vary considerably on different stationary phases with same hydrophobicity but different pore size 

and particle size. The selected biomolecules were screened using PolyPROPYL A, PolyBUTYL 

A, PolyPENTYL A, PolyHEXYL A and PolyHEPTYL A columns that were evaluated by Chen 

et al. 23-25 and the initial conditions for the separation were adopted from their research findings 

23. After an initial evaluation (Figure 4.1) PolyBUTYL A and PolyPENTYL A columns 

demonstrated very similar selectivity with an adequate separation. PolyHEXYL A column 

showed poor recovery of early eluters and co-elution of late eluters. PolyHEPTYL A column 

demonstrated similar chromatographic performance as PolyHEXYL A for late eluters but 

showed no elution for early eluters. This observation of both stronger retention and co-elution of 

the peaks may be due to the more hydrophobic nature of the longer alkyl chains stationary 

phases. Compare to PolyBUTYL A, PolyPENTYL A column has more surface area leading to 

higher efficiency. Therefore, it is found to be most suitable based on the tailing factor, resolution, 

efficiency, peak capacity (Table 4.3) for the selected molecules which is in agreement with 

previous report 23, 26.  
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Figure 4.5. Comparison of the selectivity using different poly (alkyl aspartamide) columns (MP 
A: 1 M NH4OAc and MP B: 20 mM NH4OAc with 50% MeCN @ pH 7.0) 
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Table 4.3. Comparison of PolyBUTYL A and PolyPENTYL A columns chromatographic 
performance. 

 

Column Type Peak name Resolution 
Retention 

Factor Selectivity Peak Capacity 

Po
ly

B
U

TY
L 

A
 

mAb1 NA 10.7 NA 

62 

mAb2 1.52 13.5 1.25 

NIST 1.68 16.4 1.22 

mAb4 3.26 20.9 1.27 

mAb5 1.77 23.0 1.10 

mAb6 2.52 26.1 1.13 

Po
ly

PE
N

TY
L 

A
 

mAb1 NA 12.6 NA 

105 

mAb2 1.61 14.7 1.17 

NIST 2.01 16.8 1.14 

mAb4 4.03 20.0 1.19 

mAb5 4.17 22.9 1.15 

mAb6 2.62 24.7 1.08 

Note: Poor recovery was observed using PolyPROPYL A, PolyHEXYL A and PolyHEPTYL A columns. Hence, data  
was not included. Peak capacity was calculated using peak width@50% height. 
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In sight of initial evaluation, both PolyBUTYL A and PolyPENTYL A columns were 

chosen to extend the research to study the effect of different particle sizes and pore sizes on 

chromatographic separation.  The main purpose of the study was to evaluate the separation using 

different phase systems (stationary phase and salt) in combination with different concentrations 

of MeCN in mobile phase B. This study was performed to check if a lower salt concentration 

(>0.5 M) can provide an adequate separation using columns packed with different pore sizes and 

particle sizes for the mixture of biomolecules that are used in this research. To evaluate the 

separation capabilities, an experiment was designed to use PolyPENTYL A columns with both 

1000 Å and 1500 Å pore sizes with 3 um and 2 um particle sizes and PolyBUTYL A column 

with 1000 Å pore size with 3 µm particle size. Different concentrations of ammonium acetate as 

mobile phase A and 20 mM ammonium acetate with different percentages of MeCN as mobile 

phase B was used to perform sample analysis. All these experiments were conducted using 1 

mL/min flow rate at a column temperature 25°C unless otherwise specified. 

 

4.3.1 PolyPENTYL A column with 1000 Å pore size with 3 µm particle size 

PolyPENTYL A column with 1000 Å with 3 µm particle size was used for all previous 

research experiments, hence, this column was considered as a control (Figure 4.6) for this study. 

Peaks 1 through 6 are biomolecules used as a sample mixture. The difference in selectivity was 

observed with 1M ammonium acetate as mobile phase A and 20mM ammonium acetate with 

different concentrations of MeCN as mobile phase B (Table 4.4). Refer to Section 3.3 for the 

details of the retention hypothesis. 25% MeCN was not strong enough to break the hydrophobic 

interactions between the molecule and the stationary phase alkyl chains. The increase in MeCN 

concentration showed good selectivity and a decrease in the resolution. Peaks appeared sharper 
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showing a decrease in the retention time with a similar recovery. There was at least a two fold 

increase in the peak capacity observed (Figure 4.7).  

A significant difference in the selectivity (Figure 4.8) was observed with 0.5 M 

ammonium acetate as mobile phase A and mobile phase B changing from 25% MeCN to 75% 

MeCN. 25% and 35% MeCN was not enough to elute all the peaks and co-elution was observed 

with 75% MeCN with a decrease in the resolution. Mobile phase A containing 0.5 M with 50% 

and 65% MeCN with 20mM ammonium acetate gave adequate separation and the impact of the 

salt concentration on the selectivity was explained in section 2.3. An important observation was 

made that the chromatogram obtained in this study showed wider elution window compared to 

the one obtained for Figure 2.2 using similar PolyPENTYL A columns. The reason may be due 

to column to column variability, please refer to Section 4.10 for more details.  

Mobile phase A with 0.35 M (Figure 4.9) and 0.25 M (Figure 4.11) in combination with 

25%, 50%, 65% and 75% MeCN in mobile phase B resulted in co-elution or no elution of peaks.  

To confirm the peaks order of the elution, individual molecules were injected using mobile phase 

A with 0.35 M and 75% MeCN in mobile phase B and found that mAb4 and 6 retained on the 

column showing no elution Figure 4.11. To enhance the elution of molecules in the mixture with 

0.25 M, temperature was increased from 25°C to 30°C and coeluted peaks showed some 

separation but not a significant difference from what was observed with 25°C.  In summary, 

PolyPENTYL A 1000 Å with 3 µm column give good separation with 1M and 0.5 M as mobile 

phase A and  20 mM ammonium acetate with 50% and 65% MeCN as mobile phase B but lower 

salt concentrations did not promote elution of the molecules. Peak capacity was calculated only 

for the conditions where chromatographic separation was achieved. 
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Figure 4.6. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 1M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.4. Comparison of chromatograms with 1 M ammonium acetate as mobile phase A and 
different percentages of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 3 µm, 1000 Å pore size. 

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

1M and 20mM 
with 35%MeCN 

mAb1 NA 24.0 1.56 

59 
 

mAb2 4.31 37.2 1.56 

NIST 2.04 42.9 1.16 

mAb4 3.38 50.8 1.19 

mAb5 2.13 55.4 1.09 

mAb6 5.65 71.3 1.29 

1M and 20mM 
with50%MeCN 

mAb1 NA 20.9 NA 

91 

mAb2 4.14 29.8 1.43 

NIST 1.99 33.6 1.13 

mAb4 2.66 37.9 1.13 

mAb5 2.74 42.0 1.11 

mAb6 4.47 48.6 1.16 

1M and 20mM 
with 65%MeCN 

mAb1 NA 19.5 NA 

106 

mAb2 3.98 26.8 1.38 

NIST 1.90 29.9 1.12 

mAb4 2.35 33.1 1.11 

mAb5 2.82 36.7 1.11 

mAb6 3.94 41.6 1.13 

1M and 20mM 
with 75%MeCN 

mAb1 NA 17.8 NA 

127 

mAb2 3.79 23.8 1.38 

NIST 1.80 26.2 1.12 

mAb4 2.06 28.5 1.11 

mAb5 2.79 31.6 1.11 

mAb6 3.47 35.3 1.13 
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Figure 4.7. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the peak capacity (MP A: 1M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

 
 
Figure 4.8. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.5 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.5. Comparison of chromatograms with 0.5 M ammonium acetate as mobile phase A and 
different percentages of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 1000 Å and 3 µm column.  

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

0.5M and 
20mM with 
50%MeCN 

mAb1 NA 11.0 NA 

48 

mAb2 7.93 37.6 3.47 

NIST 1.60 41.4 1.10 

mAb4 1.73 45.3 1.09 

mAb5 2.39 50.1 1.11 

mAb6 4.82 71.5 1.43 

0.5M and 
20mM with 
65%MeCN 

mAb1 NA 10.2 NA 

66 

mAb2 6.50 32.4 3.23 

NIST 1.39 35.0 1.08 

mAb4 2.14 38.7 1.11 

mAb5 1.57 41.2 1.06 

mAb6 5.71 53.7 1.30 

0.5M and 
20mM with 
75%MeCN 

mAb1 NA 10.1 NA 

77 

mAb2 5.89 28.3 2.85 

NIST 1.05 30.1 1.06 

mAb4 2.07 33.4 1.11 

mAb5 0.93 34.7 1.04 

mAb6 5.52 43.8 1.26 
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Figure 4.9. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 
 

 

 
Figure 4.10. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity of individual mAbs (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 
20 mM NH4OAc with 75% of MeCN with an aqueous pH 7.0). 



124 

 

 

 
Figure 4.11. PolyPENTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.25 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

4.3.2 PolyPENTYL A column with 1000 Å pore size with 2 µm particle size 

PolyPENTYL A column with 1000 Å with 2 µm particle size in combination of 1M 

ammonium acetate as mobile phase A and 20mM ammonium acetate with different 

concentrations of MeCN as mobile phase B (Figure 4.12) demonstrated very similar selectivity 

to PolyPENTYL A column with 1000 Å with 3 µm particle size column. 1 M with 25% MeCN 

did not elute all the peaks but as the organic concentration increased to 35% and above, all six 

molecules eluted with improved resolution. Mobile phase A with lower salt concentrations such 

as 0.5 M, 0.35 M and 0.25 M (Figures 4.14, 4.15 and 4.16) with different percentages of MeCN 

as mobile phase B, either did not elute or co-eluted peaks showed lack of selectivity under these 

conditions. This experiment confirmed that PolyPENTYL A column with 1000 Å with 2 µm 

particle size can be used with only 1 M with 35%, 50%, 65% and 75% MeCN in 20 mM 

ammonium acetate. Peak capacity was calculated only for the conditions where chromatographic 

separation was achieved. 
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Figure 4.12. PolyPENTYL A column with 1000 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.6. Comparison of chromatograms with 1 M ammonium acetate as mobile phase A and 
different percentages of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 1000 Å and 2 µm column. 

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

1M and 20mM 
with 35%MeCN 

mAb1 NA 12.9 NA 

82 

mAb2 5.21 20.5 1.58 

NIST 2.98 24.1 1.17 

mAb4 4.96 28.8 1.20 

mAb5 3.41 31.7 1.10 

mAb6 9.03 40.4 1.27 

1M and 20mM 
with50%MeCN 

mAb1 NA 11.3 NA 

121 

mAb2 4.82 16.4 1.44 

NIST 2.77 18.7 1.14 

mAb4 3.81 21.2 1.13 

mAb5 4.13 23.6 1.11 

mAb6 6.5 27.3 1.16 

1M and 20mM 
with 65%MeCN 

mAb1 NA 11.1 NA 

154 

mAb2 4.72 15.1 1.35 

NIST 2.69 16.8 1.11 

mAb4 3.33 18.5 1.10 

mAb5 4.94 20.9 1.12 

mAb6 5.22 23.3 1.11 

1M and 20mM 
with 75%MeCN 

mAb1 NA 10.1 NA 

184 

mAb2 4.57 13.2 1.30 

NIST 2.45 14.5 1.10 

mAb4 2.83 15.7 1.08 

mAb5 4.72 17.7 1.12 

mAb6 4.36 19.4 1.10 
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Figure 4.13. PolyPENTYL A column with 1000 Å and 2 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

 

 
 
Figure 4.14. PolyPENTYL A column with 1000 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.5 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0) 
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Figure 4.15. PolyPENTYL A column with 1000 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity using (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM 
NH4OAc with different percentages of MeCN with an aqueous pH 7.0). 
 

 

 
 
Figure 4.16. PolyPENTYL A column with 1000 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.25 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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4.3.3 PolyPENTYL A column with 1500 Å pore size with 3 µm particle size 

The selectivity of PolyPENTYL A column with 1500 Å with 3 µm particle size was not 

adequate in 1 M with 25% MeCN in 20 mM ammonium acetate, however, as the organic 

concentration increased to 35% and above, resolution of the peaks increased (Figure 4.17) as did 

peak capacity (Figure 4.18). 0.5 M salt concentration did not provide acceptable separation 

(Figure 4.19) with an increase of MeCN that was used in this research. However, 0.35 M as 

mobile phase A with 50%, 65% and 75% MeCN as mobile phase B showed early elution of peak 

1 but provided good chromatographic performance demonstrating these conditions can be used 

for chromatographic separation (Figure 4.20). Resolution decreased as the organic content in 

mobile phase B increased due to improved peak capacity (Figure 4.21). Surprisingly, 0.25 M in 

combination with 65% and 75% MeCN displayed adequate elution (Figure 4.22) proving that 

this column can be one of the choices to achieve chromatographic separation at low salt 

concentrations. Peak capacity was calculated only for the conditions where chromatographic 

separation was achieved. 

In this study it appeared that there was a change in the selectivity of mAbs at 

comparatively low starting salt concentrations such as 0.35 M and 0.25 M. The hypothesis for 

this finding was that the concentration of salt plays a significant role in disrupting hydration shell 

around the biomolecule and it is highly dependent on the properties of the biomolecule. The 

thickness of the hydration shell can contribute to the changes in the strength of hydrophobic 

interactions between the molecule and the stationary phase due to the exposure of more 

hydrophobic patches resulting in an increase in the adsorption for some mAbs. Pore size is a 

well-established column parameter and increase in pore size decreases the surface area. The pore 

size of these columns are large enough to accommodate biomolecule diffusion and the results 
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from the experiments do not provide details to predict the impact of the pore size on the 

chromatographic separation. The influence and the interdependency of low salt concentration on 

increased pore size is not completely understood and yet to be determined. 

 

 
 
Figure 4.17. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.7. Comparison of chromatograms with 1 M ammonium acetate as mobile phase A and 
different percentages of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 3 µm, 1500 Å pore size. 

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

1M and 20mM 
with 35%MeCN 

mAb1 NA 12.9 NA 

94 

mAb2 4.48 18.8 1.44 

NIST 4.66 24.1 1.28 

mAb4 5.24 28.9 1.20 

mAb5 3.47 31.8 1.10 

mAb6 9.17 40.1 1.26 

1M and 20mM 
with50%MeCN 

mAb1 NA 11.3 NA 

134 

mAb2 4.25 15.3 1.35 

NIST 4.24 18.7 1.22 

mAb4 4.05 21.3 1.14 

mAb5 3.97 23.7 1.11 

mAb6 7.13 27.8 1.17 

1M and 20mM 
with 65%MeCN 

mAb1 NA 10.6 NA 

164 

mAb2 4.17 13.8 1.29 

NIST 4.12 16.5 1.19 

mAb4 3.57 18.4 1.11 

mAb5 4.40 20.6 1.12 

mAb6 6.15 23.6 1.14 

1M and 20mM 
with 75%MeCN 

mAb1 NA 9.78 NA 

189 

mAb2 3.88 12.3 1.26 

NIST 3.70 14.4 1.17 

mAb4 3.03 15.8 1.10 

mAb5 4.18 17.6 1.11 

mAb6 5.31 19.8 1.13 
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Figure 4.18. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 
 

 

 
 
Figure 4.19. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.5 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Figure 4.20. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0. 
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Table 4.8. Comparison of chromatograms with 0.35  M ammonium acetate as mobile phase A 
and different percentages of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 3 µm , 1500 Å pore size.  
 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

0.35M and 
20mM with 
50%MeCN 

mAb1 NA 4.81 NA 

75 

mAb2 8.68 18.9 3.74 

NIST 1.68 20.3 1.07 

mAb4 2.99 22.6 1.11 

mAb5 4.5 25.8 1.14 

mAb6 7.05 33.1 1.28 

0.35M and 
20mM with 
65%MeCN 

mAb1 NA 4.81 NA 

91 

mAb2 4.25 16.5 3.28 

NIST 4.24 17.4 1.06 

mAb4 4.05 19.5 1.12 

mAb5 3.97 21.4 1.10 

mAb6 7.13 26.7 1.24 

0.35M and 
20mM with 
75%MeCN 

mAb1 NA 4.81 NA 

108 

mAb2 7.00 14.0 2.79 

NIST 0.97 14.6 1.04 

mAb4 3.09 16.3 1.11 

mAb5 2.53 17.4 1.07 

mAb6 7.57 21.3 1.21 
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Figure 4.21. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

 

 
 
Figure 4.22. PolyPENTYL A column with 1500 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.25 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0).  
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Table 4.9. Comparison of chromatograms with 0.25 M ammonium acetate as mobile phase A 
and 65% and 75% of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 3 µm, 1500 Å pore size. 

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

0.25M and 
20mM with 
65%MeCN 

mAb1 NA 2.91 NA 

60 

mAb2 12.06 20.1 6.35 

NIST 2.82 22.3 1.11 

mAb4 2.38 24.3 1.09 

mAb5 4.71 29.4 1.21 

mAb6 3.86 37.9 1.29 

0.25M and 
20mM with 
75%MeCN 

mAb1 NA 2.80 NA 

95 

mAb2 10.51 16.7 5.43 

NIST 2.95 18.5 1.11 

mAb4 1.59 19.5 1.05 

mAb5 4.23 22.4 1.15 

mAb6 5.25 27.1 1.20 
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4.3.4 PolyPENTYL A column with 1500 Å pore size with 2 µm particle size 

PolyPENTYL A column with 1500 Å with 2 µm demonstrated adequate selectivity using 1M 

ammonium acetate as mobile phase A in combination with all five concentrations of MeCN in 

20mM ammonium acetate as mobile phase B that were evaluated in this study (Figure 4.23). 

Every mobile phase condition demonstrated sharper peaks, high resolution, and selectivity with 

high peak capacity (Figure 4.24) compared to other columns that were evaluated in this study.   

Separation in 0.5 M with different percentages MeCN resulted in co-elution of peaks as the 

organic concentration increased from 25% to 75% (Figure 4.25). 0.35 M as mobile phase A with 

50% MeCN and higher concentration of organic in mobile phase B showed very good selectivity 

demonstrating an option to achieve adequate separation under low salt conditions (Figure 4.26) 

with an enhanced peak capacity (Figure 4.27). An interesting observation was made in the 

presence of mobile phase A containing 0.25 M with mobile phase B with 75% MeCN. This 

condition demonstrated the separation of variants for mAb1 and mAb2. If conditions are 

optimized, this combination can be exploited to separate minor variants of a mAb (Figure 4.28). 

Peak capacity was calculated only for the conditions where chromatographic separation was 

achieved. 
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Figure 4.23. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0).  
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Table 4.10. Comparison of chromatograms with 1 M ammonium acetate as mobile phase A and 
65% and 75% of MeCN with 20 mM ammonium acetate as Mobile phase B using PolyPENTYL A 
column with 2 µm, 1500 Å pore size.  

 
Mobile phase 
composition Peak name Resolution Retention 

Factor Selectivity Retention Factor 

1M and 20mM 
with 25%MeCN 

mAb1 NA 11.8 NA 

123 

mAb2 5.37 17.6 1.48 
NIST 5.14 22.2 1.26 
mAb4 5.41 24.0 1.20 
mAb5 8.30 32.9 1.23 
mAb6 7.97 36.9 1.12 

1M and 20mM 
with35%MeCN 

mAb1 NA 11.5 NA 

128 

mAb2 5.36 16.8 1.45 
NIST 5.07 20.9 1.25 
mAb4 5.41 24.4 1.17 
mAb5 6.64 28.6 1.17 
mAb6 9.43 34.9 1.22 

1M and 20mM 
with 50%MeCN 

mAb1 NA 10.9 NA 

159 

mAb2 5.32 15.3 1.40 
NIST 4.80 18.6 1.22 
mAb4 4.67 21.1 1.14 
mAb5 6.75 24.4 1.15 
mAb6 6.69 27.5 1.13 

1M and 20mM 
with 65%MeCN 

mAb1 NA 10.2 NA 

161 

mAb2 5.34 13.9 1.37 
NIST 4.66 16.8 1.20 
mAb4 4.20 18.8 1.12 
mAb5 6.60 21.7 1.15 
mAb6 5.81 24.1 1.11 

 
 
1M and 20mM 
with 75%MeCN 

mAb1 NA 9.3 NA 

215 

mAb2 5.00 12.3 1.32 
NIST 4.16 14.4 1.17 
mAb4 3.45 15.8 1.10 

mAb5 6.25 18.1 1.14 

mAb6 4.82 19.8 1.09 
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Figure 4.24. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0. 
 

 

 

 
Figure 4.25. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0. 5 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0. 
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Figure 4.26. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0. 35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc 
with different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.11. Comparison of chromatograms with 0.35 M ammonium acetate as mobile phase A 
and 50%,  65% and 75% of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyPENTYL A column with 2 µm, 1500 Å pore size.  

 

Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

0.35M and 
20mM with 
50%MeCN 

mAb1 NA 3.32 NA 

74 

mAb2 12.73 21.2 6.08 

NIST 2.97 23.7 1.12 

mAb4 2.70 25.8 1.09 

mAb5 5.68 30.3 1.17 

mAb6 6.36 40.7 1.34 

0.35M and 
20mM with 
65%MeCN 

mAb1 NA 3.16 NA 

105 

mAb2 11.29 18.3 5.47 

NIST 2.58 19.9 1.09 

mAb4 3.41 22.1 1.11 

mAb5 4.16 24.5 1.11 

mAb6 8.48 30.6 1.25 

0.35M and 
20mM with 
75%MeCN 

mAb1 NA 3.00 NA 

128 

mAb2 10.46 15.5 4.92 

NIST 2.21 16.7 1.07 

mAb4 3.69 18.5 1.11 

mAb5 2.85 19.8 1.07 

mAb6 8.89 24.3 1.22 
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Figure 4.27. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

 

 

Figure 4.28. PolyPENTYL A column with 1500 Å and 2 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0. 25 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc 
with different percentages of MeCN with an aqueous pH 7.0). 
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4.3.5 PolyBUTYL A column with 1000 Å pore size with 3 µm particle size 

PolyBUTYL A column with 1000 Å with 3 µm particle size showed very similar selectivity 

to PolyPENTYL A column (control) with the same column parameters using 1M ammonium 

acetate as mobile phase A and 20mM ammonium acetate with different concentrations of MeCN 

as mobile phase B. Mobile phase B with 25% MeCN did not elute all the peaks but selectivity 

improved significantly with 35% MeCN. With 1M salt concentration, adequate chromatographic 

separation was achieved in a combination with a MeCN concentration of 50% and above (Figure 

4.29) showing an increase in the peak capacity (Figure 4.30). Results of the chromatographic 

parameters are listed in Table 4.12.  Mobile phase A with 0.5 M and mobile phase B with 

different percentages MeCN demonstrated no elution or co-elution of peaks (Figure 4.31). 

However, and the unlike PolyPENTYL A column with same pore and particle size, butyl column 

with 1000 Å and 3 µm showed good selectivity and acceptable resolution using 0.35 M with 

65% and 75% MeCN (Figure 4.32). This behavior is a good example to explain the importance 

of stationary phase alkyl chain length which plays a significant role it plays in obtaining good 

selectivity in HHIC separation.  Similar to 1500 Å with 2 µm column, this column also showed 

the separation of variants for mAb4 in the presence of mobile phase A containing 0.25 M with 

mobile phase B with 75% MeCN. This combination of stationary and mobile phase conditions 

can be helpful to separate minor variants of a mAb (Figure 4.33). Peak capacity was calculated 

only for the conditions where chromatographic separation was achieved. 
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Figure 4.29. PolyBUTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.12. Comparison of chromatograms with 1 M ammonium acetate as mobile phase A and 
35%, 50%,  65% and 75% of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyBUTYL A column with 3 µm, 1000 Å pore size. 
 

Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

1M and 20mM 
with 35%MeCN 

mAb1 NA 29.5 NA 

79 

mAb2 4.88 40.8 1.39 

NIST 2.17 45.5 1.11 

mAb4 3.65 52.2 1.15 

mAb5 3.30 57.9 1.11 

mAb6 5.69 69.2 1.19 

1M and 20mM 
with50%MeCN 

mAb1 NA 24.5 NA 

118 

mAb2 4.34 31.7 1.30 

NIST 2.06 34.7 1.10 

mAb4 2.77 38.2 1.10 

mAb5 3.94 42.8 1.12 

mAb6 4.20 47.6 1.11 

1M and 20mM 
with 65%MeCN 

mAb1 NA 22.5 NA 

131 

mAb2 4.06 28.3 1.26 

NIST 1.94 30.7 1.09 

mAb4 2.40 33.3 1.08 

mAb5 4.02 37.4 1.12 

mAb6 3.48 40.8 1.09 

1M and 20mM 
with 75%MeCN 

mAb1 NA 20.2 NA 

164 

mAb2 3.79 24.7 1.23 

NIST 1.77 26.5 1.07 

mAb4 2.06 28.4 1.07 

mAb5 3.94 31.7 1.12 

mAb6 2.98 34.4 1.08 
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Figure 4.30. PolyBUTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on peak capacity (MP A: 1 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 
 

 

Figure 4.31. PolyBUTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.5 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Figure 4.32. PolyBUTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.35 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
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Table 4.13. Comparison of chromatograms with 0.35 M ammonium acetate as mobile phase A 
and 65% and 75% of MeCN with 20 mM ammonium acetate as Mobile phase B using 
PolyBUTYL A column with 3 µm, 1000 Å pore size. 

 
Mobile phase 
composition 

Peak name Resolution Retention 
Factor Selectivity Retention Factor 

0.25M and 
20mM with 
65%MeCN 

mAb1 NA 17.5 NA 

37 

mAb2 9.68 39.0 2.23 

NIST 2.08 42.7 1.11 

mAb4 1.13 44.8 1.05 

mAb5 2.33 48.5 1.08 

mAb6 5.58 59.6 1.23 

0.25M and 
20mM with 
75%MeCN 

mAb1 NA 16.1 NA 

52 

mAb2 9.22 32.4 2.04 

NIST 1.97 35.2 1.09 

mAb4 1.58 37.4 1.06 

mAb5 1.46 39.1 1.05 

mAb6 5.86 47.2 1.21 
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Figure 4.33. PolyBUTYL A column with 1000 Å and 3 µm particle size: Impact of MeCN 
percentage on the selectivity (MP A: 0.25 M NH4OAc at pH 7.0 and MP B: 20 mM NH4OAc with 
different percentages of MeCN with an aqueous pH 7.0). 
 

Upon reviewing the above five columns, considerable selectivity differences were observed 

with respect to alkyl chain lengths, pore and particle sizes. In addition, there are some very 

important observations in the chromatographic separations which can open the doors to explore 

separate variants of biomolecules in HHIC, which has been a challenges thus far.  

PolyPENTYL A column with 1000 Å with 2 and 3 µm particle sizes gave very similar 

selectivity with 1 M mobile phase A, but 3 µm showed selectivity with 0.5M which was not 

obtained using 2 µm column. When compared columns with same pore sizes but different 

particle sizes, columns with smaller particle size retained molecules much stronger resulting in 

poor recovery. Comparing both PolyPENTYL A column with 1500 Å pore size with 2 µm and 3 

µm particle sizes, unlike 3 µm column, 2 µm particle size column was able to elute peaks with 

both 1 M in combination with  25% MeCN and 0.35 M with 50% to 75% MeCN. However, 

between 2 µm and 3 µm, 3 µm column provided adequate elution in 0.25 M in the presence of 
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65% and 75% MeCN. The reason for stronger retention in 2 µm for both 1000 Å and 1500 Å is 

the availability of a larger surface area for adsorption.   

Experimental results demonstrated that PolyPENTYL A and PolyBUTYL A columns gave 

adequate separation using 1 M in combination with 35% and higher MeCN concentration in 

20mM ammonium acetate. However, column with 1000 Å, 3 µm separated molecules using 0.5 

M in the presence of 50% and 65% MeCN in mobile phase B. PolyPENTYL A 1500 Å and 

PolyBUTYL A 1000 Å columns with 3 um pore size were able to provide separation using 0.35 

M with 50% and higher MeCN content.  PolyPENTYL A column with 1500 Å with 2 µm pore 

size can separate molecules with 0.25 M with 75% MeCN in mobile phase B.   Unlike any other 

conditions in this study, 0.25 M salt as the starting concentration, the 2 µm, 1500 Å 

PolyPENTYL A column and 3 µm, 1000 Å PolyBUTYL A column demonstrated two minor 

variant peaks. With these results it was clear that the variations in column parameters such as 

alkyl chain with different particle and pore sizes have a significant impact on the 

chromatographic separation.  In addition, it was proven that salt concentration played a critical 

role and impacted the hydrophobic interactions by altering the selectivity of mAbs. Hence, it is 

highly beneficial to screen the stationary phase parameters to achieve chromatographic 

performance based on the separation requirements. It has been well established that increase in 

pore size will decrease the surface area, but in these columns, the difference in the surface area 

due to the changes in pore and particle size may not be significant. However, the difference in 

the pressure may contribute to subtle changes in the molecule conformation.  If any there are any 

minor structural alterations in molecule’s tertiary structure are prevented by intramolecular 

crosslinks, then the access to the hydrophobic patches can be restricted and can result in faster 

elution. As HIC is very sensitive to these minor changes it may affect the adsorption.  However, 
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the interplay of salt concentration and pore size between 1000 Å and 1500 Å is inconclusive and 

need further investigation.  

The columns and the conditions that showed adequate separation are listed in the below 

table. 

Table 4.14. Summary of different phase systems that gave adequate separation. 

 
Column Pore and particle size Mobile phase A % of MeCN in mobile phase B 

 
 
 

PolyPENTYL 
 

 

 
1000 Å, 3 µm 

1 M  50 (Control) 
1 M  35, 65 and 75 
0.5 M 50 and 65 

1000 Å, 2 µm 1 M 35, 50, 65 and 75 
 
1500 Å, 3 µm 
 

1 M 35, 50, 65 and 75 
0.35 M 50 and 65 
0.25 M 75% 

1500 Å, 2 µm 
 

1 M 25, 35, 50, 65 and 75 
0.35 M 50, 65 and 75 

PolyBUTYL 
 

1000 Å, 3 µm 1 M  35, 50, 65 and 75 
0.35 M  65 and 75 

 
Note: Mobile phase A is ammonium acetate concentration, mobile phase B is 20 mM ammonium 
acetate (overall) with different percentages of MeCN. 
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4.3.6 Comparison of peak capacity in different phase systems 

To provide a head to head comparison all five columns were compared using the selectivity 

that was obtained at the control mobile phase conditions of 1M in combination with 50% MeCN 

in 20 mM salt concentration. In these conditions all five columns gave adequate separation 

(Figure 4.34). The above experimental data demonstrated that column pore size and particle size 

contributed to the modification of molecule retention due to the differences in the available 

surface area. Columns with low surface area gave better peak shape and resolution compared to 

other columns, in addition, low surface area promoted early elution for some mAbs but not all. 

These stationary phases are newly developed and not completely optimized. The 

chromatographic performance changes might be due to the differences in the other parameters 

not limited to only pore size and particle size. Drawing a conclusion to predict the differences in 

selectivity using the low salt conditions with different column parameters needs further 

evaluation.  

The novelty of this research was to demonstrate the utility of HHIC for the first time by 

studying a mixture of mAbs under these salt conditions using poly (alkyl aspartamide) silica 

columns. The goal was to achieve adequate separation at lower salt concentrations with an 

organic percentage which can still maintain the folded confirmation of the molecule and enhance 

the MS signal. This data provided very useful insights indicating that these mobile phase and 

stationary phase conditions can be further evaluated to achieve HHIC separation with online MS 

capability. 
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Figure 4.34. Comparison of PolyPENTYL A and PolyBUTYL A columns with different pore and 
particle sizes: (MP A: 1 M NH4OAc and MP B: 20 mM NH4OAc with 50% MeCN with an 
aqueous pH 7.0). Note: Sample mixture used in 2 µm was different from the sample mixture used with 3 um 
columns. 
 

 

4.3.7 Impact of high organic content in mobile phase B 

Biomolecules retention on HIC columns is very sensitive to the percentage of organic 

solvent, specifically MeCN, in this case. This study demonstrated that some columns gave 

adequate separation and increased peak capacity with more than 50% MeCN in mobile phase B. 

Under conditions with more than 50% MeCN in combination with low salt concentrations, 

neither spilt peaks nor additional peaks were observed indicating conformational changes. 

However, it is a well-known fact that an increase in organic content can induce conformational 

changes, and it is important to make sure mobile phase with higher organic content will not 

disturb the conformational stability of a molecule. To gain some preliminary knowledge about 

the structural changes of a biomolecule in the presence of acetonitrile, experiments using 
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orthogonal techniques such as intrinsic fluorescence were performed and results were presented 

in Chapter 5. 

 

4.3.8 Column to column variability: Comparison of PolyPENTYL A columns 

In our research it was observed that chromatographic retention under HHIC stationary 

phases is highly sensitive to mobile phase and stationary phase parameters. Chromatographic 

variations from batch to batch were observed (Figure 4.35). This result can be due to minor 

differences in the columns such as pore diameter, pore volume, surface area in the stationary 

phase and packing of the material. In addition, the combination of stationary phase properties 

with minor differences in mobile phase composition can impact the retention. As these stationary 

phases are newly developed and additional optimization may enhance chromatographic 

performance. For qualitative assessment, the shift in the peaks may not have an impact, however, 

it is important to keep in mind during method development experiments and method transfer. 
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Figure 4.35. Comparison of PolyPENTYL A columns using the same lot of bulk stationary phase 
(MP A: 1 M NH4OAc and MP B: 20 mM NH4OAc with 50% MeCN with an aqueous pH 7.0). 
  

 

4.3.9 Comparison of TSKGel Butyl-NPR and PolyPENTYL A columns 

To compare the selectivity of the selected mAbs on commercially available columns, a 

sample mixture and individual mAbs were analyzed using Tosoh TSKGel Butyl-NPR column 

with phosphate and sulfate as mobile phases, which are commonly used for HIC separations. 

Peaks co-eluted on the Butyl-NPR column showing lack of selectivity (Figure 4.36 and Figure 

4.37). This experiment demonstrates that either Butyl-NPR column may not be suitable to 

separate this mixture or the method needs to be optimized to evaluate suitable mobile phase 

conditions. The same sample mixture gave an adequate separation with PolyPENTYL A column 

using a combination of ammonium acetate and 50% MeCN showing the utility of the column to 

separate molecules with very low surface hydrophobicity differences.  
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Figure 4.36. Comparison of PolyPENTYL A and Tosoh TSKGel Butyl-NPR columns with (MP A: 
1 M NH4OAc and MP B: 20 mM NH4OAc with 50% MeCN with an aqueous pH 7.0 and MP A: 
20 mM sodium phosphate, 1.5 M ammonium sulfate, 500 mM Arg and MP B: 20 mM sodium 
phosphate,  500 mM Arg, pH 7.5). 
 

 

 

 

Figure 4.37. Selectivity of individual mAbs on Tosoh TSKGel Butyl-NPR columns with MP A: 20 
mM sodium phosphate, 1.5 M ammonium sulfate, 500 mM Arg and MP B: 20 mM sodium 
phosphate,  500 mM Arg, pH 7.5. 
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4.4 Conclusion 

The purpose of this study was to evaluate the impact of chromatographic parameters on 

the chromatographic performance using poly (alkyl aspartamide) silica columns. It was evident 

that pore size, particle size, alkyl length has a significant impact on the selectivity due to the 

available surface area. Together, these parameters effected diffusion and retention of the 

molecule. Along with column parameters, mobile phase parameters such as concentration of salt 

at the starting condition and percentage of MeCN used to disrupt the hydrophobic interactions 

contributed to adequate elution. In addition, concentration of salt at the starting condition altered 

the order of mAbs elution by modifying the selectivity.  

 Assessment of chromatographic performance on multiple PolyPENTYL A columns 

demonstrated that even though pore size and particles sizes appear to be similar, there may have 

been some variations in column parameters that needs further investigation to achieve robustness 

and overcome column to column variability. 
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Chapter 5 : Evaluation of mAb Conformational Changes Using 
Intrinsic Fluorescence: Influence of Chromatographic Parameters 

5.1 Introduction  

HHIC mobile phase conditions can contribute to significant changes in biomolecule 

conformation. Salts can either promote solubility or induce self-association or aggregation. In 

addition, structural differences such as secondary and tertiary structure can be highly impacted 

by the organic content including the type, amount and contact time with the biomolecule1-6 

The evaluation of poly (alkyl aspartamide) stationary phases with butyl and pentyl alkyl 

chains with 1000 Å and 1500 Å pore sizes and 2 µm and 3 µm particle sizes showed adequate 

separation with different mobile phase conditions described in Table 4.2.4. With respect to 

chromatography (Refer to Chapter 4), the peaks in most of these experiments appeared 

homogeneous with very low or no observation of variants. To study conformational changes and 

structure evaluation of a biomolecule, there are various techniques available, such as Circular 

Dichroism (CD) 7-9, protein NMR 10-13 and intrinsic Fluorescence resonance energy 

transfer (iFRET) 14-15. To conduct a preliminary screening of conformational changes, 

experiments were performed using intrinsic fluorescence, which is an indicator for 

conformational changes in biomolecules with respect to changing tryptophans environment. 

Even though this technique does not provide conformation details of a biomolecule as NMR 16-17 

does,  it can be very useful tool for screening because of its sensitivity to changes in the 

conformational and dynamic properties due to solvent changes 18, high throughput and faster 

analysis time.   

 



162 

 

Intrinsic fluorescence, also known as Tryptophan fluorescence, is widely used as a tool to 

monitor changes in proteins and to make inferences regarding local structure and dynamics 19. 

Out of the three fluorescent amino acids that are present in biomolecules, tryptophan is the most 

abundant 20. The indole group of tryptophan is the source of UV absorbance at ∼280 nm and 

emission is at a of range 330 - 350 nm 21 depending on the polarity of its local environment 20, 22-

27. In addition, tryptophan fluorescence efficiency is strongly impacted by external and internal 

quenchers 14. Tryptophan is a relatively rare amino acid; many biomolecules contain only one or 

a few tryptophan residues. However, intrinsic protein fluorescence is very weak and will not 

occur in biomolecules if tryptophans are absent 18. Compared to extrinsic probes, this technique 

has an advantage of keeping the molecule unchanged. This technique is very sensitive, fast and 

can be automated. Specifically, observing conformational changes in conjunction with thermal 

changes, due to solvent differences can be very helpful. Identifying conformational changes 

under temperature variations will help to characterize the thermal conformational stability of 

molecules in solution as a function of the solution properties 18.  

The basic principle of this technique is, when a biomolecule is in a folded state, the 

spectral shift is towards lower wavelengths (i.e. higher energy and higher frequency), which is a 

blue shift 28, indicating tryptophans are in a hydrophobic environment 29. Unfolded molecule 

shifts towards higher wavelengths (i.e. lower energy and lower frequency) indicating a red shift 

18 and the exposed tryptophans are in a hydrophilic environment.  The spectral shift from blue to 

red represents an unfolding of a biomolecule 30. Similarly a folded molecule 330/350 ratio is high 

and as the molecule unfolds the ratio decreases 31. The magnitude of the wavelength shift 

depends on the extent to which the protein is buried in the native conformation and is exposed to 

polar environment in the unfolded state 18.  
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The aim of the study was to get an initial screening of the conformational changes under the 

chromatographic conditions which provided satisfactory chromatographic separation. The 

experiments were designed to evaluate the conformational changes separately in the presence of 

different concentrations of salt (mobile phase A), different percentages of MeCN in 20 mM salt 

(mobile phase B), and also in combination of both mobile phase A and mobile phase B. All six 

mAbs were screened to select a most sensitive probe to observe conformation changes. This 

screening experiment was carried out using an offline batch mode intrinsic fluorescence. 

The results from this preliminary research provided useful information about mAb5 

conformation in the presence of each mobile phase condition using offline batch mode intrinsic 

fluorescence in addition to sample analysis using HPLC with a fluorescence detector. All of 

these results will help to hypothesize the insights on structural modifications during the 

chromatographic separation. However, this information may not be sufficient enough to draw 

conclusions about conformational changes and additional techniques are required to evaluate the 

changes in the conformation. 

 

5.2 Experimental Details 

HPLC grade water and MeCN were used in all analysis. NH4OAc solution was purchased 

from Teknova, Hollister, CA. MeCN, was purchased from Sigma-Aldrich, 0.1N ammonium 

hydroxide was purchased from Ricca Chemicals.  HIC column PolyPENTYL A, with 

dimensions of 50 x 2.1 mm, 3 µm particles with a pore size of 1000 Å was obtained from 

PolyLC INC, Columbia, MD. Chromatographic separations were performed using Waters 

Acquity H-class HPLC system with FLR detector with a flow rate of 1.0 mL/min and spectra 

was collected from 210-400 nm. Details about the molecules and chromatographic conditions 
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were listed in Section 2.2. pH of aqueous solutions is 7. Offline batch mode intrinsic experiments 

were performed using Prometheus NT.Plex nanoDSF. Intrinsic fluorescence spectra was 

collected and the ratio was measured using 330 nm and 350 nm. Control (ctrl) sample was 

prepared using HPLC grade water at 1 mg/mL to get a baseline of the native conformation in 

addition to the samples that were prepared in mobile phase A and B according to Tables 5.1 and 

5.2. 

 

5.3 Structural Evaluation Using Intrinsic Fluorescence 

To perform an initial assessment using intrinsic fluorescence, samples were prepared at 1 

mg/mL concentration using HPLC grade water as the diluent to get a base line of the 

conformation and also to select a best suitable mAb to perform experiments for further 

conformational evaluation. The experiment was conducted by using thermal stress to unfold the 

mAbs. MAb which showed the highest difference in F330/350 ratio was an indication of highest 

unfolding.  With a preliminary scan, mAb2 showed very low signal at 30% intensity compared to 

other mAbs. Therefore, mAb2 was prepared at 5 mg/mL and rest of the mAb5 were kept at 1 

mg/mL concentration. Experiments were carried out at a temperature range of 25°C to 90°C 

using 30% excitation power to study deep conformational changes as compared to subtle 

changes. The study was designed to observe conformational changes at 25°C, and also monitor 

maximum shift in F330/350 ratio with respect to temperature variations to assess conformational 

changes which can help to identify the better probe out of all six mAbs that were used. In 

addition, thermal range was considered as a variable to observe conformational changes and to 

have as an option to use higher temperatures as needed if the column is stable under high 

temperatures. The results of F330/F350 ratio (Figure 5.1) showed that at 25°C, mAb1, mAb3 and 
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mAb6 exhibited mostly exposed tryptophans which were exposed to outside hydrophilic 

environment and mAb2 and mAb4 had some exposed. Conversely, the data showed that mAb5 

existed with least number of exposed tryptophans, which were in hydrophobic environment. 

Based on these observations, mAb5 was considered as the best choice to study the 

conformational changes using different mobile phase conditions as described in Tables 5.1 and 

5.2. 

 

 

 
Figure 5.1. The measure of unfolding in water at 25°C to 90°C using F330/F350 ratio. 

 

To study the conformational changes, mAb5 samples were prepared separately using 

different concentrations of mobile phase A, 20 mM salt with different percentages of MeCN as 

mobile phase B and also mixing both mobile phases to perform experiments as described in the 

following tables 5.1 and 5.2. 



166 

 

Table 5.1. Samples in different concentrations of mobile phase A and mobile phase B. 

 
Sample Mobile Phase A: Concentration of ammonium acetate (M) @ pH 7.0 

 

mAb5 

1 0.5 0.35 0.25 

Mobile Phase B: % of MeCN in 20 mM ammonium acetate @ pH 7.0 

25 35 50 65 75 

 
 
 
Table 5.2. Samples prepared using mobile phase A with different percentages of mobile phase B 
at 70:30 ratio. 
 

 

mAb 5 

70% of Mobile Phase A  30% of Mobile Phase B  

1M 25 35 50 65 75 

 
 

5.3.1 Impact of salt concentration (mobile phase A) 

To study the impact of salt concentration, mAb5 samples were prepared using water as 

control (Ctrl), 1 M, 0.5 M, 0.35 M and 0.25 M concentrations of ammonium acetate. The 

biomolecule demonstrated no significant difference in F330/F350 ratio in these salt conditions at 

25°C. In addition, at 25°C, the conformation of mAb5 was very similar to the conformation that 

was observed in water. High F330/350 ratio indicated that the tryptophans were folded and 

reside in protein’s interior hydrophobic environment.  As the temperature increased from 25°C to 

90°C, the molecule produced a red shift representing that the molecule had undergone unfolding 

due to the thermal stress (Figure 5.2) which was also confirmed by the decrease in F330/350 

ratio. This observation confirmed that tryptophans were exposed from a protein interior 

hydrophobic environment to an external hydrophilic polar environment. At 25°C, the same 

behavior was observed in all four salt concentrations, indicating that the changes in the molecule 
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conformation among this concentration range were insignificant. Based on the results, it was 

confirmed that at 25°C mAb5 existed in a folded state and also proved that salt with a 

concentration range of 1 M - 0.25 M did not show any impact on mAb 5 conformation. Again the 

salt impact may be different on different biomolecules. 

 

 

 
Figure 5.2. MAb5 molecule conformation measured using F330/350 ratio in water and different 
salt concentrations as mobile phase A in a temperature range of 25°C to 90°C.  
 

5.3.2 Impact of different percentages of MeCN (mobile phase B) 

The unfolding nature of the molecule was illustrated using mobile phase B, 20 mM 

ammonium acetate (overall) with different percentages of MeCN. Experimental results 

demonstrated that at 25°C, there was a significant difference in the molecule conformation with 

an increase of MeCN content from 25% to 75% in mobile phase B with 20 mM ammonium 

acetate. MAb5 showed a blue shift in the presence of 25% MeCN which confirmed the 
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molecule’s folded conformation. This observation was very similar to the conformation in water 

and also in different salt concentrations (Figure 5.2 and 5.3). As MeCN concentration in mobile 

phase B increased from 25% to 50%, the molecule showed unfolding which was represented by 

the decrease in F330/350 ratio and a red shift by moving to a higher wavelength. The 

concentration further increased to 65% and to 75% MeCN, the F330/350 ratio slowly increased 

showing indications of aggregation resulting in a blue shift (Figure 5.4). Using this technique, 

the presence of 20 mM with 25% MeCN demonstrated no major changes in the conformation. 

The assumption was, 25% MeCN in mobile phase may be not strong enough to disrupt non-

covalent interactions to unfold the molecule, and however, as the percentage increased to 35% 

and above, the conformation was impacted due to disrupted interactions and lead to an unfolding 

which eventually resulted in aggregation. A non-monotonic change of shifting to red and then 

back to blue generally indicates that the tryptophans were turning into a more hydrophobic 

environment which is associated with an aggregation. The hypothesis for the aggregation at 

higher concentrations of salt solutions can be supported by the physical observation of 

cloudiness during the sample preparations.  

The impact of organic content varies the way a biomolecule is exposed to the organic 

content. Samples were prepared using premixed mobile phase B, 20 mM with 25% to 75% of 

MeCN. The effect may vary if water added first and MeCN follows or vice versa. Earlier 

research 32 proved that proteins denature in aqueous-organic mixture but not pure organic 

content. Organic solvents expected to disrupt hydrophobic and other non-covalent interactions of 

a protein (Refer to Section 3.2). As demonstrated by Meng, water and MeCN mixture tend to 

weakens electrostatic interactions 33.   
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The observations from this experiment supported the hypothesis of possible 

conformational changes in the presence of 20 mM with different concentrations of MeCN due to 

low salt environment.  However, to gain more knowledge on structural changes under the above 

solvent conditions other conformational evaluation experiments are required. 

 

 

 
Figure 5.3. MAb5 confirmation measured in different concentrations of MeCN in mobile phase 
B using F330/F350 ratio from 25°C to 90°C. 
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Figure 5.4. MAb5 confirmation measured in 20 mM with different concentrations of MeCN as 
mobile phase B using F330/F350 ratio at 25°C.  
 

5.3.3 Impact of mobile phase composition 

HHIC experiments with various concentrations of mobile phase A and mobile phase B 

showed that mAb5 eluted within a range of 50% - 62% mobile phase A in combination with 54% 

- 27% of mobile phase B containing 20 mM ammonium acetate. Samples were prepared only in 

those conditions where the separation was adequate. In an effort to mimic the chromatographic 

elution conditions, the sample was first mixed with mobile phase A then mobile phase B was 

added to bring the sample concentration to 1 mg/mL. Experimental design was as indicated in 

the Table 5.3.  

The purpose of this experiment was to assess the tolerability of the molecule 

conformation in the mobile phase composition. Based on the observation, there was a significant 

variation in the molecule conformation with an increase from 25% to 75% of mobile phase B 
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with 20 mM ammonium acetate in combination with mobile phase A salt concentration that was 

used in this study.  

 

Table 5.3. Samples prepared using mobile phase A and mobile phase B. 
 

 

 

 

MAb5 

Mobile Phase A  20 mM ammonium acetate containing different 
% of MeCN as mobile phase B 

Ammonium acetate 
concentration 

35 50 65 75 

1 M x x x x 

0.5 M - x x x 

0.35 M - x x x 

0.25 M - - x x 

Note: “x” - Conditions used to prepare samples 
 

Intrinsic fluorescence results from 1 M and 0.35 M as mobile phase A with different 

percentages of organic in mobile phase B (Figure5.5, 5.6 and 5.7) at 25°C supported the 

assumption of biomolecule conformational stability under high salt concentrations.  No 

difference in fluorescence ratio demonstrated that there was no change in tryptophan 

environment under these conditions and molecule existed in folded state. As the temperature 

increased from 25°C to 90°C, a red shift indicated that tryptophans were exposed to hydrophilic 

environment due to an unfolding of the molecule. Unlike other higher salt conditions, 0.25M as 

mobile phase A and 20 mM with 65% and 75% MeCN as mobile phase B showed considerable 

change in fluorescence ratio, which was an indication of change in molecule confirmation due to 

low salt condition (Figure 5.9). However, a non-monotonic increase in F330/350 ratio under 

0.25M and 20 mM with 75% MeCN can be a sign of possible aggregation. By evaluating the 
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effect of mixture of mobile phase (A and B) with mobile phase A (section 5.5) and mobile phase 

B (section 5.6) separately, it was clear and supported the hypothesis of the role of MeCN is 

highly dependent upon the salt concentration. 0.25 M as mobile phase A, the salt concentration 

was helping to reduce the unfolding by holding the tryptophan hydrophobic environment. Where 

as in mobile phase B containing 20 mM with 65% and 75% MeCN, the absence of salt was 

promoting unfolding by weakening the non-specific interactions.  

 

 

 
Figure 5.5. MAb5 confirmation measured in 1M with different concentrations of MeCN in 
mobile phase B using F330/F350 ratio from 25°C to 90°C 
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Figure 5.6. MAb5 confirmation measured in 0.5M as mobile phase A with different 
concentrations of MeCN in mobile phase B using F330/F350 ratio from 25°C to 90°C 
 
 

 
 
 
Figure 5.7. MAb5 confirmation measured in 0.35M as mobile phase A with different 
concentrations of MeCN in mobile phase B using F330/F350 ratio from 25°C to 90°C 
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Figure 5.8. MAb5 confirmation measured in 0.25M as mobile phase A with different 
concentrations of MeCN in mobile phase B using F330/F350 ratio from 25°C to 90°C 
 
 

Intrinsic fluorescence data demonstrated that mAb5 showed conformation changes in the 

presence of mobile phase A, mobile phase B and in the mixture of both mobile phases. Out of all 

these conditions, mAb5 retained its folded conformation in a mixture of mobile phase A with a 

range of 1 M to 0.35 M and mobile phase B as 20 mM with 75% MeCN. However, mAb5 

aggregated in the presence of mobile phase B containing 20 mM with 75% MeCN alone. Upon 

reviewing the above two experiments, it was clear that when mobile phase A (1 M to 0.35 M) 

was added to mobile phase B with 75% MeCN, the tryptophan environment was protected by 

keeping the molecule in its folded state. This result demonstrated that the impact of 75% MeCN 

was insignificant on intrinsic florescence changes in the presence of higher salt concentration 

which is above 0.35 M ammonium acetate. The assumption was, that higher salt may have 

protected mAb5 conformation. Under high salt conditions, the biomolecule existed in the folded 
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state resulting in a blue shift with high F330/350 ratio. However, the data indicated that mAb5 

may have unfolded in the presence of mobile phase A with 0.25 M and mobile phase B 

containing 20 mM with 75% MeCN showing a decrease in F330/350 ratio (Figure 5.8 and Figure 

5.9). This intrinsic experimental data indicating possible unfolding in low salt with high organic 

content environment supports the hypothesis of high organic content can have a huge impact on 

molecule conformation, however, in the presence of high salt environment the impact is low due 

to the conformational stability. In contrary, in low salt environment high organic content can 

influence the molecule confirmation by causing partial unfolding or unfolding. The observation 

of red shift in 0.25 M and 20 mM with 75% MeCN was an indication of change in tryptophan 

environment which was caused as a result of the molecule partial unfolding or unfolding. 

 

 

 
Figure 5.9. MAb5 confirmation measured in different concentrations of salt as mobile phase A 
and 75% of MeCN in mobile phase B using F330/F350 ratio from 25°C to 90°C 
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5.3.4 Impact of mobile phase and stationary phase interplay 

Stationary phase evaluation (Chapter 4) demonstrated PolyPENTYL A 1500 Å with 2 um 

and 3 um particle size and PolyBUTYL A 1000 Å with 2 um and 3 um particle size columns 

exhibited adequate separation using 0.25 M and 0.35 M as mobile phase A in combination with 

20 mM with 65% and 75% MeCN as mobile phase B. To investigate the biomolecule 

conformation in these relatively low salt concentrations with high MeCN, the same HHIC 

experiments were repeated using a HPLC system with intrinsic fluorescence detector. The data 

was calculated using F330/350 ratio. The primary aim of this experiment was to study the role of 

hydrophobic stationary phase on the biomolecule conformation in the presence of mobile phase 

gradient. The F330/350 ratio from chromatographic data and the standalone intrinsic 

experimental results were evaluated to build a hypothesis to explain the conformational changes 

in mAb5 when exposed to chromatographic conditions.  

Results from the experiments indicated that along with mobile phase A with 1 M and 

mobile phase B containing 20 mM with 50% MeCN, mobile phase A with 0.25 M and 0.35 M in 

a combination with 20 mM with 65% and 75% MeCN in mobile phase B, showed very similar 

F330/350 ratios. Correlating chromatographic data with batch mode intrinsic data, mAb5 

behavior in different salt concentrations in combination with different percentages of organic 

solvent at 25°C (Figure 5.10) showed that the molecule existed mostly in aggregated state. 

However, as there were not enough data points to observe the trend of conformational changes, 

the outcome is inconclusive.  To perform a complete assessment on unfolding and aggregation of 

mAb5 molecule, a future experimental study should be planned to gather information with 

multiple data points using different percentages of MeCN in combination with different salt 

concentrations. 
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Figure 5.10: MAb5 confirmation measured in mobile phase A and different concentrations of 
MeCN in the presence of mobile phase B using F330/F350 ratio at 25°C. 
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5.4 Conclusion 

The results from batch mode intrinsic fluorescence and HHIC fluorescence detector 

experiments indicated that the salt in mobile phase A (1 M - 0.35 M) helped to retain mAb5 

conformation from unfolding in the presence of 20 mM containing 75% MeCN by supporting the 

hypothesis.  According to these preliminary experiments using mAb5 and intrinsic fluorescence 

technique, the results from both mobile phases A and B and the mixture of mobile phases (A and 

B) suggested that the low salt conditions mentioned in Table 4.14 (such as 0.35M and 0.25M 

with 20 mM containing 65% and 75% MeCN in mobile phase B) can be used to achieve 

adequate separation by keeping the molecule in non-denatured form. To obtain more details on 

the trend of unfolding/aggregation, additional experiments need to be performed by changing the 

MeCN concentration from 25% to 75% MeCN in mobile phase B.  

The conformational evaluation using intrinsic fluorescence was done for the first time to 

gain knowledge on a mAb’s existence under the influence of HHIC chromatographic parameters.  

Results obtained from this small set of experiments using mAb5 provided fundamental 

knowledge about possible conformational changes based on intrinsic fluorescence data and also 

brought out some important questions to extend the research and further evaluate to obtain 

deeper understanding on the conformation of biomolecules under HHIC chromatographic solvent 

conditions.  All of these experiments were performed with one mAb using one technique to 

assess the conformational changes. To expand this knowledge, the research can be continued to 

evaluate the changes in multiple mAbs and related biomolecules using techniques such as 

intrinsic fluorescence Förster resonance energy transfer (FRET), Circular Dichroism (CD), Static 

Light Scattering (SLS) and Dynamic Light Scattering (DLS) and also protein NMR can provide 

details about the structure, weight and size along with aggregation and unfolding of a molecule. 
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Collectively, these techniques can help to provide more insights to confirm the existence of 

biomolecule conformation (unfolded state, native-like or aggregated state). 
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Chapter 6 : Research Conclusions 

 
Co-formulated monoclonal antibodies (mAbs) and other related biomolecules are very 

important and fastest growing therapeutic modalities for various diseases.  To develop, 

characterize and accurately quantitate multiple biomolecules simultaneously is extremely 

important and highly challenging. There is a need to develop innovative technologies to address 

limitations and resolve the challenges. This research is to study chromatographic retention and 

enhance knowledge about HHIC and also provide possibilities to resolve some of the limitations 

to assess critical parameters of chromatographic separation.   

This dissertation provides new insights about HHIC capabilities to evaluate mixture of 

mAbs using poly (alkyl aspartimide) columns, which can also facilitate MS compatibility. This 

research provides useful information on working range of mobile phase parameters such as salt 

concentration, pH, organic modifier and temperature to achieve adequate separation. The study 

design also expands the knowledge of stationary phase properties such as hydrophobicity, 

particle size and pore sizes that contribute towards achieving adequate separation under low salt 

conditions to enhance ESI/MS signal, while keeping the molecule in folded or native-like 

confirmation. The highlights are: 

• This novel research demonstrated the utility of HHIC for the first time using a mixture of 

mAbs and separate them simultaneously. 

• In this research the utility of salt concentration was illustrated by demonstrating that 

adequate separation is achievable using low salt concentration despite earlier reports to 

the contrary.  In addition, low salt (0.5M) provided superior chromatographic separation 

and significant improvement in ESI/MS response. The improvement in separation is a 
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result of reduced retention of early eluting components combined with an unexpected 

greater retention of later eluting components which results in a widening the 

chromatographic window (increased peak capacity). The new finding is use of low salt as 

a starting condition to obtain greater retention which is atypical HIC behavior.  The 

improvement in ESI/MS response, which is a direct result of the use of lower salt 

concentration, also represents a significant enhancement since the main motivating factor 

of hybrid HIC is to enable online MS compatibility to HIC separation.  

• With 0.25 M salt as the starting concentration, the 2-µm, 1500-Å PolyPENTYL A 

column exhibited two minor variant peaks that were not observed in any other 

chromatogram in this research.  This research demonstrated that low salt not only 

improves ESI/MS signal but can be further evaluated to separate minor variants of a 

mAb. 

• Conformational analysis confirmed mAb5 existed in folded or native-like conformation 

under low salt conditions (0.25 M and 0.35M) in combination with high MeCN (65% and 

75%).  

• The results of gradient steepness and linearity velocity indicate that the impact of these 

parameters followed expected tendencies with a relatively modest loss of efficiency at the 

highest linear velocity. 

• A pH range of 5.7 - 7.3 was evaluated as most of the biomolecules exhibit high chemical 

and physical stability. The results indicated that when pH was close to the pI of the 

molecule a decrease in retention was observed for some molecules and no impact on 

others. This behavior was a result of a decrease in the charge of a molecule which was a 

result of pH of the mobile phase. The study also demonstrated the impact of pH is 
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complex because it is mainly driven by the properties of the molecule with respect to the 

charged moieties. Even though pH may not a critical parameter, it can be used to widen 

the chromatographic window and optimize the separation. 

• It has been well established that in HIC methodology organic modifier decreases the 

retention. These experimental results confirmed that to perform HIC on poly(alkyl 

aspartimide) columns, organic solvent is required to disrupt hydrophobic interactions and 

elute peaks when low concentrations of ammonium acetate was used for the separation. 

Evaluation of different organic solvents illustrated that adequate separation was achieved 

using a non-polar solvent, such as MeCN but a polar solvent such as IPA produced more 

complex chromatogram with multiple peaks for each component. It appears IPA enables 

the separation of variants which was not observed with MeCN. Use of IPA can be further 

evaluated to gain knowledge on separating variants. This is a valuable finding opens up 

an opportunity to use IPA for separating variants and use MeCN to quantitate as an 

ensemble of biomolecule depending upon the type of analysis.  

• In conventional HIC columns, increase in the temperature increase the retention. For the 

first time the effect of temperature (20°C - 30°C) on these columns was evaluated and the 

results indicated that with an increase in temperature, retention decreased. This is atypical 

behavior of HIC columns. This result may be due to the changes in the diffusion of the 

molecule through the stationary phase or in lower temperatures hydrophobic effect 

becomes weaker.  

• The study to evaluate the effect of stationary phase hydrophobicity indicated that column 

parameters significantly impact selectivity. PolyPROPYL column was unable to retain 

molecules, however, as the alkyl chain length increased to HEPTYL early eluters 
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demonstrated failed to elute and later eluters coeluted showing the impact of stationary 

phase hydrophobicity. 

• Column pore size and particle size contributed to the modification of molecule retention 

due to the differences in available surface area. Columns with low surface area gave 

better peak shape and resolution compare other columns. The low surface area promoted 

early elution for some mAbs but not all. These stationary phases are newly developed and 

yet to be optimized, therefore, some of the chromatographic performance changes may be 

due to the differences in other column parameters than just pore size and particle size.  

Drawing a conclusion to predict the difference in selectivity using the low salt conditions 

with different column parameters needs further evaluation. 
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