
Seton Hall University
eRepository @ Seton Hall
Seton Hall University Dissertations and Theses
(ETDs) Seton Hall University Dissertations and Theses

Spring 5-16-2015

Functional Analysis of the Molluscum
Contagiosum Virus MC160 Death Effector
Domain-Containing Protein RxDL Motif
Sarah Weber
sarah.weber@student.shu.edu

Follow this and additional works at: https://scholarship.shu.edu/dissertations

Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Investigative
Techniques Commons, Skin and Connective Tissue Diseases Commons, and the Virology
Commons

Recommended Citation
Weber, Sarah, "Functional Analysis of the Molluscum Contagiosum Virus MC160 Death Effector Domain-Containing Protein RxDL
Motif " (2015). Seton Hall University Dissertations and Theses (ETDs). 2068.
https://scholarship.shu.edu/dissertations/2068

https://scholarship.shu.edu?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/etds?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/958?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/942?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations/2068?utm_source=scholarship.shu.edu%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

 

 

 

 

 

 

 

Functional Analysis of the Molluscum Contagiosum Virus MC160 Death 

Effector Domain-Containing Protein RxDL Motif 

By 

Sarah Weber 

 

 

 

 

 

 

 

 

Submitted in partial fulfillment of the requirements for the degree of Master of 

Sciences in Biology from the Department of Biological Sciences of Seton Hall 

University May, 2015 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Sarah Weber 

 Seton Hall University 

Department of Biological Sciences 



iii 

APPROVED BY 

 

 

MENTOR 

Dr. Daniel B. Nichols 

 

 

COMMITTEE MEMBER 

Dr. Tin-Chun Chu 

 

 

COMMITTEE MEMBER 

Dr. Heping Zhou 

 

 

DIRCTOR OF GRADUATE STUDIES 

Dr. Allan D. Blake 

 

 

CHAIRPERSON, DEPARTMENT OF BIOLOGICAL SCIENCES  

Dr. Jane Ko 



iv 

 

Table of Contents 

Acknowledgements………………………………………………………Page viii 

Abstract…………………………………………………………………….Page ix 

Introduction…………………………………………………………….….Page 1 

Materials and Methods……………………………………….……….…Page 15 

Results………………………………………………………………….…..Page 26 

Discussion…………………………………………………………….…...Page 57 

References………………………………………………………………....Page 60 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

List of Tables 

Table 1 

The optimized cycling conditions for RxDL Mutants…...………………….Page 17 

Table 2 

The primers used for generating RxDL Mutants and verifying sequence 

changes………………………………………………………….……….…….Page 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

List of Figures 

Figure 1 

Alignment of Different DED containing proteins………………………….Page 6 

Figure 2 

IFN-β Signaling Pathway…………………………...……………………….Page 9 

Figure 3 

NF-кB Signaling Pathway…………………...……………………………….Page 12 

Figure 4 

RxDL motif mutants made on pHA-MC160 and pHA-MC160N…...…….Page 14 

Figure 5 

The Mutagenesis Process using Primers………………………………….Page 19 

Figure 6 

The protein alignment of MC159 and MC160……………………………..Page 27 

Figure 7 

Chromatograms of pHA-MC160 RxDL Mutants…...……………………...Page 29 

Figure 8 

Chromatograms of pHA-MC160N RxDL Mutants…………………………Page 31 

Figure 9 

Protein Alignments of pHA-MC160 RxDL Mutants…………………..…...Page 33 

Figure 10 

Protein Alignments of pHA-MC160 RxDL Double Mutants……...….……Page 34 

Figure 11 



vii 

Protein Alignments of pHA-MC160N RxDL Mutants…..…………….…….Page 36 

Figure 12 

Protein Alignments of pHA-MC160N Double Mutants…...……………….Page 37 

Figure 13 

Immunoblot of pHA-MC160 and pHA-MC160N RxDL Mutants….……...Page 39 

Figure 14 

The Activation of IFN-β by the over expression of MAVS and pHA-MC160 and 

pHA-MC160N RxDL Mutants……………………………………….……….Page 42 

Figure 15 

The Activation of IFN-β by the over expression of MAVS and pHA-MC160 and 

pHA-MC160N RxDL Double Mutants…...………………………………….Page 44 

Figure 16 

The Activation of IFN-β by the over expression of MAVS and pHA-MC160 and 

pHA-MC160N RxDL Mutants………………………………………………..Page 46 

Figure 17 

The Activation of IFN-β by the over expression of TBK1 and pHA-MC160 and 

pHA-MC160N RxDL Mutants……………………….……………………….Page 49 

Figure 18 

The Activation of IFN-β by the over expression of TBK1 and pHA-MC160 and 

pHA-MC160N RxDL Double Mutants……………………………………….Page 51 

Figure 19 



viii 

The Activation of NF-кB by the over expression of Catalytically Inactive 

Procaspase-8 and pHA-MC160N RxDL Mutants……………………….…Page 54 

Figure 20 

The Activation of NF-кB by the over expression of RIP-1 and pHA-MC160N 

RxDL Mutants………………………………………………………..………...Page 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

I would like to acknowledge and thank Dr. Joanna Shisler (University of Illinois) 

for her generous donation of all the plasmids, Dr. Laurent Poliquin (University of 

Quebec, Montreal) for his donation of the MEF cell line, Dr. Daniel B. Nichols for 

all of his assistance with this project, and my family and friends. I would also like 

to thank and acknowledge funding for this thesis from the University Research 

Council and Department of Biological Sciences, Seton Hall University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

Abstract 

 The Molluscum contagiosum virus (MCV) is a member of the Poxviridae 

family that causes benign skin lesions. MCV lesions persist on average for 8-12 

months in otherwise healthy individuals. MCV lesions are characterized by 

reduced inflammation.  The persistence and reduction of inflammation at the site 

of MCV lesions have been attributed to MCV immune evasion genes. MCV 

encodes two death effector domain (DED) containing proteins, MC159 and 

MC160. DEDs are found in cellular proteins such as FADD and procaspase-8. 

These cellular proteins are involved in several innate immune responses such as 

apoptosis and activation of interferon (IFN). Presumably, MC159 and MC160 

bind to host DED-containing proteins as a means to prevent the formation of 

innate immune signaling complexes. The RxDL motif is conserved among 

several host and viral DED-containing proteins and has previously been shown to 

be required for protein function.  The hypothesis of this study was the MC160 

protein requires the RxDL motif to inhibit the activation of host inflammatory 

pathways. MCV mutants with mutated RxDL motifs were assessed for the ability 

to inhibit TBK1- and MAVS- induced activation of interferon-β. Surprisingly, the 

RxDL mutants retained the ability to inhibit IFN-β activation as assessed by the 

activity of a firefly luciferase gene under the control of the IFN-β enhancer.  

Therefore, the RxDL motif of the MC160 protein is not required for the inhibition 

of IFN activation.
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Introduction 

 The Molluscum contagiosum virus (MCV) is a member of the Poxviridae 

family. Since the eradication of the variola virus, the causative agent of smallpox, 

MCV is the only poxvirus that strictly infects humans. MCV causes benign 

neoplasms that persist from months to years and are characterized by reduced 

inflammation (Shisler & Moss, 2001). In immunocompromised patients, MCV 

infections tend to be more severe and result in the formation of larger and more 

numerous than normal neoplasms (Theiler et al., 2011; Chularojanamontri et al., 

2010; Drain et al. 2014). The virus spreads primarily through skin to skin contact, 

including sexual activity. MCV can also spread by autoinoculation. Poxviruses 

typically have a broad tissue or host tropism (Randall & Shisler, 2013). In 

contrast, MCV only infects epidermal keratinocytes with 122 million cases 

reported worldwide as of 2012 (Hay et al., 2014).  

Presently, MCV has no FDA approved cure, no vaccine, and no rapid 

diagnostic tool. The most common treatment for MCV includes administration of 

cantharidin or imiquimod, cryotherapy, curettage, and cidofovir (Coloe & Morrell, 

2009). The problems associated with these physical treatments are blistering or 

post-treatment pigment changes, anxiety and pain. Cidofovir can cause kidney 

damage or failure as well as a number of other undesirable side effects for the 

patient. However, none of these treatment methods are 100% effective for curing 

MCV lesions and there can be reoccurrence of the virus (Shisler, 2015). 
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Despite its prevalence, MCV remains under researched. MCV cannot be 

propagated in tissue culture. Despite this limitation, the genome of MCV has 

been sequenced. MCV is predicated to encode 77 potential host interacting 

proteins (Senkevich et al., 1996). Six of these proteins have been characterized 

in various host signaling pathways. The immune evasion proteins of MCV have 

been characterized as MC159, MC160, MC54, MC148 and MC007 (Randall & 

Shisler, 2013). MC54 inhibits interleukin-18 by binding to interleukin-18 (Xiang & 

Moss, 2003). MC148 binds to CCR8 and CxC12α and inhibits chemotaxis (Jin et 

al., 2011; Luttichau et al., 2001). MC007 inhibits a tumor suppressor protein, 

Retinoblastoma protein (pRb) (Mohr et al., 2008). MC66 inhibits apoptosis by 

inhibition of hydrogen peroxide and UV light (Shisler et al., 1998). The immune 

evasion protein MC159 inhibits apoptosis and Nuclear Factor-kappa B (NF-кB).  

MC160 has shown no anti-apoptotic function but does inhibit NF-кB and will be 

discussed in detail later (Shisler, 2015). 

Immune evasion molecules antagonize immune responses to neutralize 

the host antiviral state to allow for viral proliferation. MCV upregulates the 

expression of Toll-like receptor (TLR) 3 and 9 which detect viral RNA and DNA 

within the cell and tumor necrosis factor (TNF) and IFN-beta (IFN-β) are highly 

expressed in the infected neoplasm and surrounding tissue (Ku et al., 2008). 

MC159/MC160 has already been shown to dampen the activation of type I 

interferon (IFN) transcription factors. The upregulation of these proinflammatory 

genes suggests MCV lesions would be highly inflamed. However, the lack of 
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inflammation at MCV neoplasms indicates the initial infection is not sufficient to 

induce the innate immune system. Immune cells involved in the inflammatory 

response such as T cells, natural killer cells, and Langerhans cells are not 

recruited to the site of MCV infections (Viac & Chardonnet, 1990). Within the 

cytoplasm, poxvirus transcription produces dsRNA as a transcriptional byproduct 

(Willis et al., 2011). dsRNA induces several pattern recognition receptors (PRRs) 

which in turn induce the expression of interferon beta (IFN-β) through activation 

of interferon response factor 3 (IRF 3). However, like other members of the 

Poxviridae family, MCV viral proteins antagonize the host’s innate immune 

response.  

The immune evasion proteins of MCV, MC159 and MC160, are homologs 

of the cellular Fas-associated death domain-like interleukin-1-beta converting 

enzyme (FLICE)-like inhibitory protein (FLIP) family of proteins (Fig. 1) (Randall 

& Shisler, 2013). Included in this family of proteins are viral FLIPs (vFLIP) such 

as the Kaposi’s sarcoma-associated herpesvirus (KSHV) K13 protein and the 

cellular FLIP (cFLIP) proteins of which there are three variants: cFLIP long 

(cFLIPL), cFLIP short (cFLIPS), and cFLIPR. Both vFLIPs and cFLIPs are 

procaspase-8 and-10 homologues that lack an active site and are therefore 

catalytically inactive. The hallmark of the FLIP family of proteins is the presence 

of tandem death effector domains (DEDs) (Fig. 1) (Li et al., 2006). DED-

containing proteins interact with various signaling pathways to mediate biological 
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processes such as apoptosis and activation of proinflammatory transcription 

factors IRF-3 and NF-κB (Garvey et al., 2002A; Shisler, 2014).  

The death-inducing signaling complex (DISC) is formed when a death 

receptor receives a signal mediated by highly specific protein-protein interactions 

that generate oligomeric signaling.  DISC is comprised of Fas, the Fas Receptor, 

Fas-associated death domain (FADD), and caspase-8 or -10 are assembled via 

homotypic associates between the death domains of the Fas Receptor, FADD 

and the DEDs of FADD and the pro domain of caspase-8 and -10 (Randall et al., 

2012; Murao & Shisler, 2005). The interaction between FADD and the DED-

containing pro-domain of caspase-8 initiates proteolytic auto-processing of 

procaspase -8 and -10 resulting in the activation of effector caspase -3 and -7 will 

result in the commitment of the cell to apoptosis. 

Both vFLIPs and cFLIPs inhibit cell death by preventing proteolytic 

cleavage and subsequent activation of procaspase-8 after it associates with 

FADD, thereby inhibiting the formation of a functional DISC (Chaudhary et al., 

2000; Shisler & Moss, 2001; Garvey et al., 2002A). MCV MC159 and MC160 

vFLIPs bind FADD and procaspase-8 presumably through interactions with 

DEDs (Shi et al., 2006; Thome et al., 1997; Shisler & Moss, 2001; Shisler & 

Nichols, 2009).  However, while expression of the MC159 protein protects cells 

from Fas-mediated apoptosis, MC160 expression does not (Randall et al., 2014).  

Most single and tandem DEDs contain a highly conserved charged triad 

(Yang et al., 2005). The charged triad is a unique feature of DEDs and is a 
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network of hydrogen bonds between side chains of charged residues composed 

of E/D-RxDL and is highly conserved amongst DED containing proteins (Twomey 

et al., 2013). This triad is homologous amongst DED containing proteins such as 

MC160, MC159, procaspase-8 and procaspase-10 (Fig. 1A). The crystal 

structure of MC159 revealed this hydrogen bonded charged triad on the surface 

of DED 1 and DED 2 where the triad is referred to as E/D-RxDL where x 

represents a variable amino acid (Yang et al., 2005). The hydrogen bonds 

formed between the three amino acids are believed to be involved in maintaining 

a precise organization of the side chains and a local role in maintaining the 

conformation of this region of the DED. The bonds form between the Asp and 

Arg residues on helix H6 and negatively charged residues in helix H2 of the 

RxDL motif (Yang et al., 2005). In caspase-8, DED2 the E/D-RxDL motif has a 

Glu Lys and Ser at the three charged residue positions (Fig. 1B). This could be 

due to the change of Arg to Lys lowers the hydrogen bonding potential so that it 

now only interacts with one negatively charged residue in the triad. MC159 RxDL 

mutants lost the ability to antagonize apoptosis induced by Fas (Garvey et al., 

2002B; Yang et al., 2005). These DEDs bind to different proteins and kinases in 

the signaling pathway to initiate either the expression of NF-кB for a 

proinflammatory response or interferon-β for initiating an antiviral response 

(Valmiki & Ramos, 2008). 
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Figure 1: The alignment of different DED containing proteins to show the 
homology between the MCV immune evasion proteins MC159, MC160 and 
cellular proteins.  
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DED-containing proteins, such as FADD, also bind to various proteins and 

kinases the signaling pathways to initiate the interferon (IFN) antiviral response 

(Valmiki & Ramos, 2008).  Type I IFNs, such as IFN-α and IFN-β, are responsible 

for activating the antiviral state within infected host cells. The innate immune 

response utilizes type I IFNs to stimulate the activity of natural killer cells, 

antibody-dependent cytotoxicity, and T suppressor cells (Müller et al., 1994). The 

expression of IFN-β can be achieved by many different signaling pathways such 

as retinoic inducible gene I (RIG-1) and melanoma differentiated associated gene 

5 (MDA5) (Kalai et al., 2008). The upstream cellular sensors for cytosolic dsRNA 

trigger different signaling pathways, such as sensors that activate IFN-β and NF-

кB. RIG-1 will interact with procaspase-8 to trigger mitochondria associated viral 

signaling (MAVS) adaptor protein activation by binding at CARDs (Takeuchi & 

Akira, 2008; Kawai et al., 2005; Johnson & Gale, 2006; Roth & Ruland, 2011). 

MAVS will form a signaling complex with FADD, TNF receptor associated factor 

3 (TRAF3) adaptor protein, TRAF family member associated NF-кB activator 

(TANK), and tumor necrosis factor receptor type I associated death domain 

(TRADD) to activate Interferon Regulatory Factor (IRF)-3 and NF-кβ. Tank will 

bind TRAF3 and TRAF2 recruit TANK binding kinase 1 (TBK1) and I kappa Beta 

kinase ε (IKKε) phosphorylation of IRF3. IRF3, NF-кB, and activating protein 1 

(AP-1) induce the expression of type I IFNs (Randall & Shisler, 2014).  

Expression of both MC159 and MC160 block MAVS- and TBK-1 induced 

activation of IFNβ.  MC159 associates with TBK1 and IKKε.  However, MC160 
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did not associate with either kinase (Randall et al., 2014).   Given the known 

association with MC160 and FADD, one possibility may be that MC160 interacts 

with FADD to inhibit the formation of MAVS-signaling complexes.  However, the 

functionality of the MC160-FADD interaction has not been evaluated. MC159 

inhibits IRF3 by binding to the TBK1:IKKε complex (Fig. 2).  
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Figure 2: The signaling of IFN-β by viral sensors in the cytoplasm. The viral 
dsDNA is converted by RNA polymerase III to 5’-triphosphate RNA which will 
induce IFN-β production through RIG-1 and (MDA5). RIG-1 and MDA5 will 
activate MAVS through CARD-CARD interactions. MAVS will then recruit TRADD 
and TANK to bind TRAF3 and TRAF2 which promotes TBK1 and IKKε 
phosphorylation of IRF3 that induces the expression of type I interferon genes 
(IFN-β).  
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 Both MC159 and MC160 expression dampen tumor necrosis factor (TNF)-

induced NF-kB activation. TNF-α is a proinflammatory cytokine involved in 

apoptotic signaling, activation of Mitogen-activated protein kinase and NF-кβ 

(Murao & Shisler, 2005). Many poxviruses have developed mechanisms for 

inhibiting TNF-α mediated cytotoxicity to prevent cytokine regulatory cascades. 

Once the tumor necrosis factor receptor (TNFR) is bound to TNFα, a signaling 

complex composed of tumor necrosis factor receptor type I associated death 

domain (TRADD), TRAF2, and receptor interacting protein (RIP) is assembled 

(Hayden & Ghosh, 2008; Li et al., 2013). The signalsome subsequently recruits 

the IKK complex consisting of kinases IKKα and IKKβ and the regulatory IKKγ. 

The IKK complex induces phosphorylation of the IкB inhibitory protein.   IкB 

sequesters the NF-кB transcription factor in the cytoplasm.  Upon 

phosphorylation, IкB is tagged for ubiquitination and degradation which frees NF-

кB allowing it to translocate to the nucleus and induce expression of 

proinflammatory cytokines and apoptosis (Hu et al., 2000; Bhoj & Chen, 2009). A 

second signaling complex consisting of ubiquinated RIP-1 binding to a signaling 

complex consisting of TRADD, FADD, procaspase-8 the NF-кβ-IKKβ and IKKα 

complex (Grunert et al. 2012).  This signaling complex can signal the activation 

of either apoptosis or NF-κB depending on whether procaspase-8 undergoes 

proteolytic cleavage or is inhibited by binding to cFLIP. MC159 inhibits NF-кB 

activation by binding to TRAF2 and IKKγ (Shisler & Murao, 2005; Randall et al., 

2014). MC160 also inhibits TNF-induced NF-kB activation.  MC160 associates 
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with procaspase-8 and may also inhibit the formation of the IKK complex, 

presumably by disrupting IKKα and heat shock protein (Hsp) 90 interactions.  

The MC160 DED 2 is sufficient for this inhibition (Nichols & Shisler, 2009). 
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Figure 3: NF-кB signaling when stimulated by cytokines through binding of the 
TNF-α receptor. Upon ligand binding, Tumor necrosis factor receptor 1 (TNF-R1) 
binds the homologous domain of TRADD, a death domain containing cytoplasmic 
adaptor protein. TRADD activates a kinase cascade by recruitment of RIP, a 
death domain containing protein, and TRAF2. The DED of FADD binds to the N-
terminal prodomain of caspase-8 which will then induce apoptosis. If FADD is not 
recruited to the complex then the signaling complex of RIP, TRAF2, and TRADD 
will activate NEMO which will then cause phosphorylation dependent 
ubiquitination of IkB freeing NF-кB to translocate to the nucleus and induce the 
expression of proinflammatory cytokines. 
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The purpose of this thesis was to analyze the RxDL motif of MC160 in 

various signaling pathways that activate IFN-β and NF-кB.The MCV protein 

MC159 when mutated at the RxDL motif resulted in a loss of function in apoptotic 

pathways. Due to the homology between MC159 and MC160 and the conserved 

nature of the RxDL motif amongst DED-containing proteins the working 

hypothesis is that the RxDL motif of MC160 is required for the function of MC160 

as a means of host inflammatory pathways (Garvey et al., 2002B). A loss of 

function MC160 mutant could yield valuable clues on the molecular mechanism 

utilized by the MC160 protein to inhibit host innate immune responses. 

Additionally, the role of the RxDL motif will be characterized in TBK1- and MAVS-

induced IFN-β signaling. The RxDL motif was mutated within each of the DEDs 

and then tested in TBK1- and MAVS-induced IFN-β and RIP-1- and procaspase-

8-induced NF-кB signaling pathways. The mutations were generated in the first 

DED RxDL motif at R67AD69A and the second DED RxDL motif at R160AD162A 

(Fig. 4). An RxDL double mutant was generated in order to test both RxDL motif 

changes. 
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Figure 4: The mutations generated on the RxDL motif of the tandem death 
effector domains present on HA MC160 and the N-terminus of HA MC160 
missing the C-terminus. The mutations were generated on the charged triad at 
R67AD69A and R160AD162A for a single mutation test and a double knockout 
generated with both R67AD69A and R160AD162A with the positively charged 
arginine replaced with alanine which has a neutral charge. The relative area of 
the RxDL motif for each DED changed is indicated with (    ). 
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Materials and Methods 

DNA Preparations 

 Bacteria with plasmid inserts were cultured in a BD Falcon tube with 3 

milliliters of Luria broth (Sigma Aldrich) with 100μg/mL of ampicillin (Amp) at 

37°C rocked at 225 rpm in the Incu-Shaker Mini. The cultures were allowed to 

grow between 16-19 hours prior to extracting the DNA. The cultured bacteria 

were concentrated by centrifugation at 14,000 rpm for 1 minute in an eppendorf 

tube and then re-suspended in nuclease free water and combined in one 

eppendorf tube. The DNA was then harvested following the manufacturer’s 

protocol for the PureYield Plasmid Miniprep System (Promega). All plasmids 

were generously donated by Dr. Joanna Shisler (University of Illinois). The 

plasmids used were MAVS, TBK1, IFN-β-luciferase, NF-кB-luciferase, pHA-

MC160, pHA-MC160N, pCI, pRenilla TK, C360S, RIP-1, pHA-MC160C, and 

pHA-MC160 DED 2. 

Mutagenesis  

 The pHA-MC160 or pHA-MC160N, a truncated version of pHA-MC160 

composed of the DED containing N-terminus; DNA was diluted to 10 ng from a 

DNA stock and used in PCR. Sequence changes were made using primers 

created based on the known sequence of pHA-MC160 or pHA-MC160N to 

change the amino acid sequence from arginine/aspartate to alanine. The cycling 

conditions for each mutant are listed in Table 1 and the primers used to generate 

each mutant are listed in Table 2. All of the PCRs used to generate the mutants 
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were run with equal parts of forward and reverse primers at 10 μM. Reactions 

were run following the manufactures’ protocol for the Phusion High Fidelity kit 

(New England BioLabs). The fragment sizes were verified by gel electrophoresis 

on a 0.6% agarose gel run with 1X Tris-acetate buffer (TAE) made from a 50X 

stock of TAE (2.0 M Tris-Acetate, 0.5 M Ethylenediaminetetra acetic acid (EDTA), 

pH 8.3 and nuclease free water up to a liter). After the fragment sizes were 

verified the DNA was either PCR purified or gel extracted following the 

manufacturers protocol (Promega). Then the forward and reverse fragments 

were used as the DNA template in the PCR and fused together using the NFor 

and CRev (pHA-MC160) or NFor and FRev (pHA-MC160N) as shown in Figure 

5.  
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Table 1: The optimized cycling conditions for the PCR reactions for R67AD69A 
and R160AD162A mutations to pHA-MC160 or pHA-MC160N DNA. These 
conditions were used to generate the forward and reverse mutated fragments 
and then to anneal the mutated fragments together and generate the entire 
mutated sequence. 

Cycle Steps Cycles Temperature Time 

Initial 
Denaturation 

1 98°C 30 seconds 

Denaturation 30 98°C 10 seconds 

Annealing 30 60°C 15 seconds 

Extension 30 72°C 10 seconds 

Final Extension 1 72°C 10 min  

Hold 1 4°C ∞ 
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Table 2: The created primer sequences based on pHA-MC160 or pHA-MC160N 
to change the amino acid sequence in the regions of R67AD69A and 
R160AD162A to an alanine and control primers for pHA-MC160 or pHA-
MC160N. The underlined nucleotides represent the changed nucleotides. 
Sequencing primers were used to sequence the HA-MC160, HA-MC160N, abd 
RxDL motif mutants DNA. The primers, pCIseq, HA-MC160 509-528 Reverse 
(Rev), and HA-MC160 509-528 Forward (For) were created to sequence the 
mutated regions, R67AD69A, R160AD162A, and double mutants, to confirm the 
changes were present in comparison to the wild-type sequence of HA-MC160 or 
HA-MC160N. 
Primer Name Primer Sequence DNA 

Sample 
Used 

HA-MC160 NFor 5’ CGA GAA TTC GCC ACC ATG TAT 
CCA 3’ 

HA-MC160 
AND HA-
MC160N 

HA-MC160 DED 2 
Rev  

5’ GGA AAG AGC ATA AGC GCA AAC 
GGC 3’ 

HA-MC160 
AND HA-
MC160N 

HA-MC160 CRev 5’ CGT CTA GAC GCT CGC TAG TAG G 
3’ 

pHA-MC160 

HA-MC160 DED 2 
For  

5’ GCC GTT TGC GCT TAT GCT CTT 
TCC 3’ 

pHA-MC160 
AND pHA-
MC160N 

HA-MC160 DED 1 
Rev  

5’ GAG AAC AGC AAA AGC CCG GAG C 
3’ 

pHA-MC160 
AND pHA-
MC160N 

HA-MC160 DED 1 
For  

5’ CGC TCC GGG CTT TTG CTG TTC 
TCA AG 3’ 

pHA-MC160 
AND pHA-
MC160N 

HA-MC160 FRev 5’ GGT CGA CTC TAG ATT ACC CCG C 
3’ 

pHA-
MC160N 

pCIseq 5’ GTC CAC TCC CAG TTC AAT TAC AG 
3’ 

- 

HA-MC160 509-528 
Rev 

5’ CAC GGA AAG ATC GTA TCT GC 3’ - 

HA-MC160 509-528 
For 

5’ GCA GAT ACG ATC TTT CCG TG 3’ - 
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Figure 5: An example of the process of mutagenesis in order to change the 
RxDL motif of pHA-MC160 using the primers for R67AD69A. The HA tag and 
restriction enzymes sites were on the primers. Once the entire strand is formed 
with the mutation, the DNA was enzyme digested with Xba1 and EcoR1 to 
linearize the vector, pCI, to allow for the insert to be ligated into the vector. 
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Then 1 μg of mutated pHA-MC160 or pHA-MC160N DNA samples were 

restriction enzyme digested with Xba1 and EcoR1 to linearize the DNA. A pCI 

mammalian expression vector (Promega) was used as the vector. pCI contains 

the human cytomegalovirus immediate-early gene enhancer/promoter region and 

promotes constitutive expression of the cloned DNA inserts in mammalian cells. 

The vector pCI and all mutant DNA samples were restriction enzyme digested to 

linearize the DNA. In an eppendorf tube 5 μL of 2.1 buffer (New England 

BioLabs), 1 μL of Xba1 enzyme (New England Bio Labs), and nuclease free 

water (Promega) were combined for a total volume of 50 μL. The tubes were 

placed in a tube holder and incubated at 37°C water bath for 90 minutes to 

digest.  

The 2.1 buffer was converted to EcoR1 buffer by adding the following to each 

of the sample tubes: 3 μL of 1.5 M Tris pH 7.9, 1.25 μL of 1% Triton, and 1 μL 

EcoR1 enzyme (New England BioLabs). The tubes were placed in a tube holder 

and incubated at 37°C water bath for 90 minutes to digest. All of the samples 

were then loaded into a 0.6% agarose gel and ran at 100V for 30-45 minutes with 

1 kb ladder (New England BioLabs). The fragments were gel extracted per 

manufacturers protocol (Promega) using a UV illuminator.  

The linearized RxDL mutant pHA-MC160 and pHA-MC160NDNA was ligated 

into the pCI vector using T4 ligase (New England Biolabs) with a 3:1 insert to 

vector molar ratio of restriction digested DNA. Combined in each eppendorf tube 

was 2 μL of T4 ligase buffer, 1 μL T4 ligase, 1X restricted digested pCI DNA, 3X 
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restriction digested mutated pHA-MC160 DNA, and nuclease free water to 20 µL. 

The reaction was allowed to run between 10-15 minutes at room temperature. 

 After the ligation reaction, 40 μL of DH5α competent cells (Life 

Technologies) and 5 μL of the ligation reaction were combined and placed on ice 

for 30 minutes. Then heat shocked for 45 seconds in a 42°C water bath; and 

placed back on ice for 2 minutes. 900 μL of S.O.C media (Life Technologies) was 

added to each BD Falcon tube and then placed in a 37°C Incu-Shaker Mini for an 

hour. From each tube 50 μL was plated on a Luria broth agar plates containing 

100 μg/mL ampicillin and grown between 16-21 hours in a 37°C incubator. 

Isolated colonies were extracted and grown (Page15 DNA Preparations). The 

samples were restriction enzyme digested with Xba1 and EcoR1 (Page 20) to 

verify the correctly sized insert was present. 

 Samples with the correct size insert were sent for sequencing to Genewiz 

Incorporated. In a PCR strip each tube contained 500 ng/ μL of sample DNA, 5 

μM of primer (Table 2; pCIseq, HA-MC160 509-528 Rev, HA-MC160 509-528 

For), and nuclease free water to 15 μL. After the samples were processed, the 

sequences were compared to the control of pHA-MC160 or pHA-MC160N 

sequences and analyzed using Clone Manager. The chromatograms for the 

generated sequences were analyzed with Chromas Lite. 

Cell Culture 

 The human embryonic kidney 293T (HEK 239T) cells were obtained from 

ATCC. The murine embryonic fibroblast wild-type (MEF) cells were obtained from 
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Laurent Poliquin (University of Quebec, Montreal). Cells were cultured in 

Dulbecco’s Modified Eagle’s Media supplemented with 10% fetal bovine serum 

and 1% penicillin/streptomycin. Cells were maintained in T75 flasks in a 

humidified incubator at 37°C with an air saturation of 6.0% CO2. Once cells 

reached at least 80% confluence as observed under the microscope, cells were 

passaged at either 1:5 or 1:10.  

Luciferase Assays 

 In 12 well plates, HEK 293T or MEF wt cells were plated at 2.0 x 105 cells 

per well. The wells were then transfected with 500 ng of plasmid DNA, 500 ng 

MAVS, TBK1, RIP-1 wt or 250 ng C360S, 225 ng reporter mix of IFN-β-luciferase 

or NF-кB-luciferase and 25 ng of Renilla TK, and 3.75 μL of Mirus Trans-IT 2020 

reagent (Mirus) or 3 μL of P3000 and 4.5 μL of Lipofectamine 3000 (Invitrogen). 

At 100% confluence the cells were harvested between 24-52 hours post-

transfection using 100 μL of 1X passive lysis buffer. The plates were rocked on a 

BioRocker for 20-30 minutes and then 10 μL of each of the lysates were assayed 

for sea pansy and firefly luciferase activity by using the Dual-reporter assay 

(Promega). 

After rocking, 10 μL of lysate from each well were placed in a 96 well 

opaque plate (Costar) and firefly luciferase substrate was added to each well. 

The luciferase activity was measured as relative light units using the SpectraMax 

M5 reader and analyzed with SoftwareMax Pro. After the firefly readings were 

saved, sea pansy luciferase substrate was added to each well and read. All 
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assays were performed in triplicates. For each experimental point, firefly 

luciferase activity was divided by sea pansy luciferase activity to correct for 

differences in transfection efficiencies. The resultant ratios were normalized to 

those of the appropriate control cells, consisting of cells co-transfected with pCI, 

IFN-β-luciferase or NF-кB-luciferase, and pRenilla TK null, whose value was 

taken as 1. Results were displayed as relative change in luciferase activity 

compared to pCI-transfected cells. Statistical significance was determined by 

using two tailed t test with significance set at p< 0.05.  

Immunoblotting 

 HEK 239T cells were plated at 3.0 x 105 cells per well in 6 well plates. The 

wells were transfected with 1 μg of plasmid DNA, 100 μL OptiMEM (Life 

Technologies), and 3 μL of Mirus Trans-IT 2020 reagent. After transfection the 

cells were harvested at 24 hours post-transfection. The media was aspirated off 

the plate from each well and each well was washed with 1 mL of cold phosphate 

buffered solution (PBS). Cells were removed from the plate using a cell scraper, 

then centrifuged at 14,000 rpm at 4°C for 30 seconds. After the PBS was 

removed, the cells were suspended in 100 μL of Death Effector Domain (DED) 

lysis buffer (buffer (140 mM NaCl, 10 mM Tris [pH 7.2], 2 mM EDTA, and 1% NP-

40) with protease inhibitors (Sigma Aldrich). The cells were incubated on ice for 

30 minutes, then centrifuged at 14,000 rpm at 4°C for 10 minutes. The lysates 

were removed from the pelleted cell debris. 
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To each sample 20 μL of sample buffer [6X SDS-PAGE (0.375 M Tris pH 

6.8, 12% SDS, 60% glycerol, 0.06% bromophenol blue)] with 5% 2-

Methylcaptoethanol was added and placed in a heat block between 95°C-100°C 

for 5 minutes and boiled. The lysates were resolved on a 10% SDS-PAGE. In 

each sample well 12.5% of prepared sample was added. In the first well 10 μL of 

precision protein ladder (Bio Rad) was loaded. The gel was run using 1X SDS-

PAGE (0.25 mM Tris, 1.92 mM glycine, 0.001% SDS, and deionized water). The 

gel was run at 120 Volts for 45-60 minutes. The proteins were transferred to a 

nitrocellulose membrane using transfer buffer (25 mM Tris base, 192 mM glycine, 

20% methanol) and transferred at 90V for 60 minutes.   

After the membranes were blocked between 30 minutes and 24 hours in 

1X Tris buffered saline with Tween® 20 (TBST (0.01 M Tris pH 7.5, 0.15 M NaCl, 

0.05% Tween-20® (USB)) and 5.0% milk (Carnation Non-Fat Dry Milk).The 

blocking solution was removed and primary antibody, monoclonal mouse anti-HA 

(Sigma Aldrich) was diluted 1:5000 in 1X TBST with 0.5% milk and blotted for 1 

hour while rocked (BioRocker). All mutant MC160 proteins express a HA-epitope 

tag at the N-terminus of the protein. After an hour the primary antibody was 

removed and the membrane was washed with 0.5% milk 1X TBST three times 

for 10 minutes. The secondary antibody, goat anti-mouse (Sigma Aldrich) was 

diluted 1:2500 in 0.5% milk 1X TBST and blotted for 1 hour while rocked. The 

membrane was washed three times with 0.5% milk 1X TBST for 10 minutes after 

the antibody solution was removed and rocked. The membranes were then 
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removed from the 0.5% 1X TBST solution and blotted dry prior to being placed in 

ECLC solution (Pierce) to soak. The bands were visualized using 

chemifluorescence on a STORM860 scanner and ImageQuant software. 
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Results 

Protein alignment of MC159 and MC160 

 The RxDL motif has been shown to be required in MC159 to inhibit 

apoptosis (Garvey et al., 2002B). The RxDL motif of MC160 was analyzed in this 

thesis in IFN and NF-кB signaling pathways.  The amino acid residues of the 

MC159 and MC160 DED regions were aligned using Clone Manager (Figure 6).   

The charged triad is highly conserved between DED-containing proteins. MC159 

and MC160 both contain the RxDL motif.  
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Figure 6: The protein alignment of MC159 and MC160, DED-containing amino 
acid residues. The RxDL motif for DED 1 are indicated with (*) and DED 2 are 
indicated with (Δ). 
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Generation of RxDL mutants by site directed mutagenesis  

 The RxDL motif has previously been shown to be involved in the immune 

evasion of pHA-MC159 (Garvey et al., 2002B). In the previous study by Garvey 

(2002B) changing an arginine/aspartate in the RxDL motif to alanine resulted in a 

loss of function in apoptotic signaling. Due to the homology between pHA-MC159 

and pHA-MC160 and the conservation of the RxDL motif amongst DED 

containing proteins it was hypothesized this mutation would also result in a loss 

of function in pHA-MC160 in the IFN-β and NF-кB signaling pathways.  

The pHA-MC160 RxDL mutants (R67AD69A, R160AD162A and double 

mutants) were generated using site directed mutagenesis by PCR. After which, 

the mutants were sent to Genewiz, Inc for sequencing to verify the nucleotide 

sequence. The sequencing data was analyzed based on protein alignments and 

chromatograms. The mutants were sequenced using a pCIseq and two internal 

primers (Table 2). The chromatograms for pHA-MC160 RxDL mutants all showed 

the desired changes in the DNA, shown by the low background and high intensity 

peaks (Fig. 7). The first change underlined (GCT) was the nucleotide sequence 

changed in the DNA to switch arginine/aspartate to alanines. There was a hairpin 

structure in the primer for the second DED that was removed by changing A to C 

and C to T on the RxDL mutants. The second change was done in order to 

remove a hairpin structure that would have complicated the process of creating 

the mutant. The wild-type sequences were displayed above the chromatograms. 



29 

Figure 7: The chromatograms for the mutated pHA-MC160 to verify the 
nucleotide sequence was changed to code for a neutral alanine rather than a 
positive arginine on the charged triad, RxDL motif for the first DED R67AD69A, 
the second DED R160AD162A, and the double mutant with both DEDs changed. 
The second change was done in order to remove a hairpin structure that would 
have complicated the process of creating the mutant. Above all of the 
chromatograms the wild-type (wt) that were changed using the primers listed in 
Table 2 and sequenced using the primers listed in Table 3 sequences are 
displayed in bold. 
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The C-terminus of pHA-MC160 has activity in some of these signaling 

pathways such as IFN-β and NF-кB (Shisler and Nichols, 2009). To distinguish 

the activity of only the DED-containing N-terminus from the C-terminus additional 

mutants were generated using pHA-MC160N which is the DED-containing N-

terminus of pHA-MC160. The pHA-MC160N RxDL mutants (R67AD69A, 

R160AD162A and double mutants) were generated using site directed 

mutagenesis by PCR. The RxDL mutant DNA samples were sent to Genewiz Inc 

for sequencing. The mutants were sequenced using a pCIseq and two internal 

primers (Table 2). The sequencing data was analyzed based on protein 

alignments and chromatograms. The chromatograms for pHA-MC160N RxDL 

mutants all displayed the desired nucleotide changes as indicated by the high 

intensity peaks and low background (Fig. 8). The first underlined change (GCT) 

shows the nucleotide sequence changed in the DNA to change the amino acids 

from arginine/aspartate to alanines (Fig. 11 and 12). There was a hairpin 

structure in the primer for the second DED that was removed by changing A to C 

and C to T on the RxDL mutants. The second change was done in order to 

remove a hairpin structure that would have complicated the process of creating 

the mutant. The wild type (wt) sequences were displayed above the 

chromatograms. 
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Figure 8: The chromatograms for the mutated pHA-MC160N to verify the 
nucleotide sequence was changed to code for a neutral alanine rather than a 
positive arginine on the charged triad, RxDL motif for the first DED R67AD69A, 
the second DED R160AD162A, and the double mutant with both DEDs changed. 
The second change was done in order to remove a hairpin structure that would 
have complicated the process of creating the mutant. Above all of the 
chromatograms is displayed the wild-type (wt) sequences that were changed 
using the primers listed in Table 2 and sequenced using the primers listed in 
Table 3 is displayed in bold. 
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After the nucleotide sequences were verified using Chromas Lite, the 

sequences were translated into amino acids using Clone Manager. The amino 

acid sequences were then aligned with the pHA-MC160 wild-type protein 

sequence to verify the changes were present in the RxDL motif. In the 

R67AD69A region arginine/aspartate were changed to alanines (Fig.9A). The 

R160AD162A was aligned with wild-type and the amino acid changes of 

arginine/aspartate to alanines were verified (Fig. 9B). The double mutant with 

both DED 1 and DED 2 changes were made in order to ensure the unchanged 

DED was not compensating for the change to the RxDL motif of the other region 

(Fig. 10). Both DEDs can independently inhibit host innate immune responses 

with DED 1 involved in IFN-β signaling and DED 2 involved in NF-кB signaling 

(Shisler & Nichols, 2009; Yang et al., 2005).  
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Figure 9: The protein alignments for pHA-MC160 and the mutated pHA-MC160 
to verify the amino acid was changed from a positive arginine to a neutral alanine 
on the charged triad, RxDL motif for the first DED R67AD69A (A) and the second 
DED R160AD162A (B).  

A 

B 
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Figure 10: The protein alignments for pHA-MC160 and the mutated pHA-MC160 
to verify the amino acid was changed from a positive arginine to a neutral alanine 
on the charged triad, RxDL motif for the double mutation of the first DED 
R67AD69A and the second DED R160AD162A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 
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After the nucleotide sequences were verified using Chromas Lite, the 

sequences were translated into amino acids using Clone Manager. The amino 

acid sequences were then aligned with the pHA-MC160N wild-type protein 

sequence in order to verify the changes were made in the RxDL motif. In the 

DED 1 region arginine/aspartate were changed to alanine (Fig.11A). Then DED 2 

was aligned with wild-type and the amino acid changes were verified, 

arginine/aspartate to alanine (Fig. 11B). The double mutant with both DED 1 and 

DED 2 changes were made in order to ensure the unchanged DED was not 

compensating for the change to the RxDL motif of the other region (Fig. 12).  

Previous data indicated that the MC160 DED 1 dampens induction of IRF-3, 

while MC160 DED 2 antagonizes TNF-mediated NF-кB signaling (Randall et al., 

2014, Shisler & Moss, 2001).  
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Figure 11: The protein alignments for pHA-MC160N and the mutated pHA-
MC160N to verify the amino acid was changed from a positive arginine to a 
neutral alanine on the charged triad, RxDL motif for the first DED R67AD69A (A) 
and the second DED R160AD162A (B).  
 

A 

B 
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Figure 12: The protein alignments for pHA-MC160N and the mutated pHA-
MC160N to verify the amino acid was changed from a positive arginine to a 
neutral alanine on the charged triad, RxDL motif for the double mutant with the 
first DED (R67AD69A) and the second DED (R160AD162A).  
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The expression of RxDL mutants by immunoblotting 

 After the changes were verified by protein alignment and chromatograms, 

immunoblotting was performed to verify the protein expression levels (Yang et 

al., 2005). The pHA-MC160, pHA-MC160N and all RxDL mutants have an HA 

epitope tag on the N-terminus of the protein allowing for detection using anti-HA 

antibodies. 

 The pHA-MC160 R67AD69A and R160AD162A RxDL mutants were 

detected at similar levels to the wild-type (Fig. 13A). The RxDL mutants were 

detected at lower levels than wild-type in the R160AD162A mutation for pHA-

MC160N while the R67AD69A mutant was detected at similar levels to wild-type 

(Fig. 13B). However, the double mutants were detected at lower expression 

levels than the wild-type (Fig. 13C and D) suggesting the RxDL motif might be 

involved in the conformation and stability of the protein as was the case for 

MC159 (Garvey et al., 2002B; Twomey et al., 2013).  
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Figure 13: The expression levels of pHA-MC160 proteins and the N-terminus of 
pHA-MC160 (HA-MC160N or pN) proteins by immunoblotting. The mutation for 
R160AD162A expressed at weaker levels in comparison to the wild type for both 
HA-MC160 and HA-MC160N (A) and (C). The double mutants, R67AD69A and 
R160AD162A, expressed at lower levels than the wild type for both HA-MC160 
and HA-MC160N (B) and (D). All membranes were blotted with anti-HA (1:5000) 
and goat anti-mouse (1:2500).  
 

 

 

 

 

 



40 

The MC160 RxDL motif is not required for the inhibition of MAVS-induced 

activation of IFN-β luciferase 

 Poxviruses encode a large number of proteins that inhibit innate immune 

responses. IFN-β can be stimulated by many cellular sensors.  For this 

experiment, overexpression of either MAVS or TBK1 was utilized to activate 

IFNβ. MAVS is an adaptor protein that will induce formation of the TBK1 and the 

IKK complex. Overexpression of either MAVS or TBK1 molecules can activate 

the IFN-β controlled luciferase gene (Seth et al., 2005). It has already been 

shown that MC159 and MC160 viral FLIP inhibits IFN-β production by binding to 

the TBK1:IKKε complex (Randall et al., 2014). In this experiment MAVS was 

used because it has already been shown stimulating with MAVS induces the 

formation of the signaling complexes and increase IFN-β-luciferase activity in 

comparison to cells treated with pCI vector alone (Randall et al., 2014). The 

function the RxDL motif of MC160 has never before been tested on IFN-β-

luciferase. However, it was predicated that the RxDL motif mutants would no 

longer be able to inhibit IFN-β. 

 When assessing the MAVS inhibitory function of single RxDL mutant 

MC160/MC160N proteins by luciferase reporter assay, mutated MC160 proteins 

showed approximately an 8 fold reduction for R160AD162A and 10 fold reduction 

for R67AD69A for MAVS-induced luciferase activity when compared to pCI-

transfected cells (Fig. 14). In contrast the pHA-MC160N RxDL mutants showed 

approximately a 10 fold reduction for R67AD69A and a 20 fold reduction for 
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R160AD162A in comparison to pCI stimulated cells (Fig. 14). The R67AD69A 

RxDL motif mutant inhibited better than pHA-MC160 while the R160AD162A 

RxDL motif inhibited to similar levels as pHA-MC160. Corresponding to these 

results R67AD69A and R160AD162A RxDL motif mutants inhibited better than 

pHA-MC160N. The RxDL mutants showed no loss of function in comparison to 

the wild-type and inhibited better than or to similar levels of wild-type. 
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Figure 14: The effect of pHA-MC160 and pHA-MC160N wild type and RxDL 
mutant proteins on the activation of IFN-β. Subconfluent HEK293T cells were 
transfected with IFN-β luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 
500 ng); pHA-MC160 (500 ng), pHA-MC160N (500 ng), pHAMC160 R67AD69A 
(500 ng), pHA-MC160 R160AD162A (500 ng), pHA-MC160N R67AD69A (500 
ng), and pHA-MC160N R160AD162A (500 ng); and MAVS (500 ng). Twenty-four 
hours later, cells were lysed and firefly and sea pansy luciferase activities were 
measured. Values are shown as mean ± standard deviations (SD) with significant 
differences between RxDL mutants and wild-type determined by two tailed t-test 
with significance set at p<0.05 (*) with tests run in triplicate at n=3. 
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While mutating a single RxDL motif did not result in a loss of function for 

MAVS-induced IFN-β luciferase activity it was possible that a double mutant 

would. It was possible that the non-mutated RxDL motif on the DED is 

compensating for the mutated RxDL motif of the other DED in the signaling 

pathway. The RxDL double mutants for pHA-MC160 and pHA-MC160N showed 

approximately a 10 fold reduction of MAVS-induced activation of IFN-β (Fig. 15). 

The second DED was used as a negative control in this experiment as the 

second DED is not known to be involved in IFN signaling. Both RxDL mutants 

inhibit the activation of MAVS-induced IFN-β-luciferase better than the wild-type. 

The results were consistent with previous studies that DED 1 appears to be 

involved in inhibiting MAVS signaling through MC160 (Fig. 15) (Shisler, 2014). It 

can therefore be concluded that the RxDL motif was not required for the MC160 

protein inhibition of MAVS-induced IFN-β activity.  

 
 
 



44 

 
Figure 15: The effect of pHA-MC160 and pHA-MC160N wild type and RxDL 
mutant proteins on the activation of IFN-β. Subconfluent HEK293T cells were 
transfected with IFN-β luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 
500 ng); pHA-MC160 (500 ng), pHA-MC160N (500ng), pHA-MC160N 
R67AD69A, R160AD162A (500 ng), and pHA-MC160N R67AD69A, 
R160AD162A (500 ng); and MAVS (500 ng). Twenty-four hours later, cells were 
lysed and firefly and sea pansy luciferase activities were measured. Values are 
shown as mean ± standard deviations (SD) with significant differences between 
RxDL mutants and wild-type determined by two tailed t-test with significance set 
at p<0.05 (*) with tests run in triplicate at n=3. 
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The luciferase expression tests performed in HEK293T cells all showed no 

loss of function in RxDL mutants for pHA-MC160 and pHA-MC160N proteins. 

Therefore, to test if the results were consistent or cell line dependent, the 

mutants were tested in MEF wild-type cells. The results found in the MEF cells 

were similar to those in HEK239T cells; none of the RxDL motif mutants resulted 

in a loss of function. The R67AD69A pHA-MC160 mutant showed approximately 

a 4.5 fold reduction in comparison to pCI stimulated with MAVS. The 

R160AD162A pHA-mutant showed approximately a 3.5 fold reduction in 

comparison to pCI stimulated with MAVS. The pHA-MC160N R67AD69A showed 

approximately a 5 fold induction and the R160AD162A showed approximately a 

4.5 fold reduction in comparison to pCI stimulated with MAVS. However, the 

values of firefly:sea pansy luciferase activity in the presence of the pHA-MC160N 

double mutant were similar to the R160A/D162A mutant (Fig. 16). The second 

DED was used as a negative control as it is not known to inhibit MAVS-induced 

IFN expression. Consistent with HEK293T data none of the RxDL mutants 

showed a significant difference in the inhibition of MAVS-induced IFN-β-

luciferase when analyzed against the wild-type protein. 
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Figure 16: The effect of pHA-MC160 and pHA-MC160N wild type and RxDL 
mutant proteins on the activation of IFN-β. Subconfluent MEF wt cells were 
transfected with IFN-β luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 
500 ng); pHA-MC160 (500 ng), pHA-MC160N (500 ng), DED 2 (500 ng), 
pHAMC160 R67AD69A (500 ng), pHA-MC160 R160AD162A (500 ng), pHA-
MC160 R67AD69A, R160AD162A (500 ng), pHA-MC160N R67AD69A (500 ng), 
pHA-MC160N R160AD162A (500 ng) and pHA-MC160N R67AD69A, 
R160AD162A (500 ng); and MAVS (500 ng). Values are shown as mean ± 
standard deviations (SD) with significant differences between RxDL mutants and 
wild-type determined by two tailed t-test with tests run in triplicate at n=3. 
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The MC160 RxDL motif is not required for the inhibition of TBK1-induced 

activation of IFN-β luciferase 

 TBK1 is a downstream kinase involved in the activation of IFN-β. TBK1 

can directly phosphorylate the IFN-β transcription factor IRF 3. MC160 has not 

been shown to associate with TBK1. However, MC160 has been shown to inhibit 

IRF3 but, the molecular mechanism is unknown. Both viral proteins of MCV can 

inhibit TBK1 activation through DEDs, MC160 DED 1 shows inhibition, while 

DED 2 does not (Randall et al., 2014).  

When assessing the effect of RxDL mutant MC160/MC160N proteins by 

luciferase reporter assay, the RxDL motif mutants still inhibited TBK1-induced 

IFN-β luciferase. pHA-MC160 R160AD162A showed a 3.5 fold reduction and 

R67AD69A a 14 fold reduction for TBK1-induced luciferase activity when 

compared to pCI-transfected cells (Fig. 17). The pHA-MC160N RxDL mutants 

showed a 14 fold reduction for R67AD69A and R160AD162A for TBK1-induced 

luciferase activity when compared to pCI stimulated with TBK1 (Fig. 17). The 

RxDL mutants showed no loss of function in comparison to the wild-type and 

inhibited better than or to similar levels of wild-type. However, R67AD69A 

mutants showed stronger inhibition of TBK1-induced IFN signaling in comparison 

to MC160/MC160N. The R160AD162A mutant showed less inhibition of TBK1-

induced IFN signaling only for pHA-MC160. The pHA-MC160N R160AD162A 

mutant inhibited to similar levels of wild-type. From these results it can be 
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concluded that the RxDL motif was not required for inhibition of TBK1-induced 

IFN signaling by the MC160 protein.  
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Figure 17: The effect of pHA-MC160 and pHA-MC160N wild type and RxDL 
mutant proteins on the activation of IFN-β. Subconfluent HEK293T cells were 
transfected with IFN-β luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 
500 ng); pHA-MC160 (500 ng), pHA-MC160N (500 ng), pHAMC160 R67AD69A 
(500 ng), pHA-MC160 R160AD162A (500 ng), pHA-MC160N R67AD69A (500 
ng), and pHA-MC160N R160AD162A (500 ng); and TBK1 (500 ng). Twenty-four 
hours later, cells were lysed and firefly and sea pansy luciferase activities were 
measured. Values are shown as mean ± standard deviations (SD) with significant 
differences between RxDL mutants and wild-type determined by two tailed t-test 
with significance set at p<0.05 (*) with tests run in triplicate at n=3. 
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While single RxDL mutants did not result in a loss of function for TBK1-

induced IFN-β luciferase activity it was possible that a double mutant would. The 

function of the two DEDs is not interchangeable and it was possible that the non-

mutated RxDL motif on the DED was compensating for the mutated RxDL motif 

of the other DED in the signaling pathway The RxDL double mutants for pHA-

MC160 and pHA-MC160N both showed approximately an 18 fold reduction for 

TBK1-induced luciferase activity when compared to pCI stimulated with TBK1 

(Fig. 18). Both RxDL double mutants inhibit the activation of TBK1-induced IFN-

β-luciferase better than the wild-type. These results were consistent with 

previous studies that MC160 inhibits TBK1 signaling (Fig. 18) (Randall et al., 

2014). It can therefore be concluded that the RxDL motif was not required for the 

MC160 proteins inhibition of TBK1-induced IFN-β activity.  
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Figure 18: The effect of pHA-MC160 and pHA-MC160N wild type and RxDL 
mutant proteins on the activation of IFN-β. Subconfluent HEK293T cells were 
transfected with IFN-β luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 
500 ng); pHA-MC160 (500 ng), pHA-MC160N (500 ng), pHA-MC160 R67AD69A, 
R160AD162A (500 ng), and pHA-MC160N R67AD69A, R160AD162A (500 ng); 
and TBK1 (500 ng). Twenty-four hours later, cells were lysed and firefly and sea 
pansy luciferase activities were measured. Values are shown as mean ± 
standard deviations (SD) with significant differences between double mutants 
and wild-type determined by two tailed t-test with significance set at p<0.05 (*) 
with tests run in triplicate at n=3. 
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The MC160 RxDL motif is not required to inhibit procaspase-8-induced 

activation of NF-кB luciferase 

 Caspase-8 plays an essential role in the regulation of apoptotic and non-

apoptotic signaling pathways. Caspase binds to the DED of FADD (Takahashi et 

al., 2006). When procaspase-8 is activated by proteolytic cleavage it will transmit 

apoptotic signals through cleavage of various substrates.Caspase-8 can also 

induce NF-кB activation in response to Fas or antigen receptors (Kruez et al., 

2004; Takahashi et al., 2006).The NF-кB:IкB complex that must be 

phosphorylated and ubiquinated for NF-кB expression. The RxDL motif of the 

MC160 protein has not been tested for interaction with procaspase-8, but it is 

known that MC160 associates with procaspase-8. 

In conditions with over-expression of C360S, catalytically inactive 

caspase-8, the NF-кB regulated luciferase activity varied based on the 

concentration of procaspase-8 to MCV proteins. When procaspase-8 and 

MC160N and RxDL mutant proteins were present at a 1:1 concentration there 

was less than a fold difference in the activity of RxDL mutants and MC160N 

when compared to pCI stimulated cells (Fig. 19A). At a 1:1 ratio the RxDL 

mutants were unable to inhibit the activation of NF-кB (Fig. 19A). This suggests 

that at equal ratios of procaspase-8 and MC160 protein the activation of NF-кB 

was not completely suppressed. 

When assessing the procaspase-8 inhibitory function of the mutant 

MC160N proteins by luciferase reporter assay, mutated MC160N proteins 
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showed approximately a 10 fold reduction of procaspase-8-induced luciferase 

activity when compared to pCI-transfected cells (Fig. 19B). When there was a 

ratio of procaspase-8 to MC160/MC160N/mutants proteins MC160N of 2:1 the 

luciferase activity for NF-кB was significantly decreased (Fig. 19B). Procaspase-8 

levels for the mutated charged triad mutants and the double mutants were found 

to be inhibiting to the similar levels as wild type (Fig. 19). The data suggests 

inhibition of NF-кB depends on the levels of viral proteins in relation to 

procaspase-8 to prevent the activation of proinflammatory cytokine gene 

expression and that the RxDL motif was not required for inhibition of procaspase-

8 induced NF-кB inhibition. 
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Figure 19: The effect of pHA-MC160N wild type and RxDL mutant proteins on 
the activation of NF-кB. (A) Subconfluent HEK 293T cells were transfected with 
NF-кB luciferase (225 ng); pRenilla-TK (25 ng); pCI (750 ng and 325 ng); pHA-
MC160N (250 ng), pHA-MC160N R67AD69A (250 ng), pHA-MC160N 
R160AD162A (250 ng), pHA-MC160N R67AD69A, and R160AD162A (250 ng); 
and C360S (250 ng). (B) Subconfluent HEK293T cells were transfected with NF-
кB luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 500 ng); pHA-
MC160N (500 ng), pHA-MC160N R67AD69A (500 ng), pHA-MC160N 
R160AD162A (500 ng), and pHA-MC160N R67AD69A, R160AD162A (500 ng); 
and C360S (250 ng). Twenty-four hours later, cells were lysed and firefly and sea 
pansy luciferase activities were measured. Values are shown as mean ± 
standard deviations (SD) with significant differences between RxDL mutants and 
wild-type determined by two tailed t-test with significance set at p<0.05 (*) with 
tests run in triplicate at n=3 (A) and tests run in duplicate at n=3 (B). 
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The MC160 RxDL motif is not required to inhibit RIP-1-induced activation of 

NF-кB luciferase 

Downstream of procaspase-8 in TNFR signaling is RIP-1. Previous 

studies have shown that MC160 can inhibit RIP-1 (Shisler & Nichols, 2009). DED 

1 of MC160 has no effect on RIP-1-induced NF-кB activation (Shisler & Nichols, 

2009).The NF-кB regulated luciferase, activity was significantly decreased when 

MC160N or MC160N mutants were present (Fig. 20). When assessing the RIP-1 

inhibitory function of the mutant MC160N proteins by luciferase reporter assay, 

MC160N RxDL mutant proteins showed a 24 fold reduction of RIP-1-induced 

luciferase activity when compared to pCI-transfected cells (Fig. 20). RIP-1 levels 

for the mutated charged triad mutants and the double mutant were found to 

inhibit better than wild-type (Fig. 20). This suggests that the RxDL motif of 

MC160 was not necessary for the inhibition of RIP-1-induced NF-кB expression.  
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Figure 20: The effect of pHA-MC160N wild type and RxDL mutant proteins on 
RIP-1 induced activation of NF-кβ. Subconfluent HEK293T cells were transfected 
with NF-кB luciferase (225 ng); pRenilla-TK (25 ng); pCI (1000 ng and 500 ng); 
pHA-MC160N (500 ng), pHA-MC160N R67AD69A (500 ng), pHA-MC160N 
R160AD162A (500 ng), and pHA-MC160N R67AD69A, R160AD162A (500 ng); 
and RIP-1 wt (500 ng). Twenty-four hours later, cells were lysed and firefly and 
sea pansy luciferase activities were measured. Values are shown as mean ± 
standard deviations (SD) with significant differences between RxDL mutants and 
wild-type determined by two tailed t-test with significance set at p<0.05 (*) with 
tests run in triplicate at n=3. 
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Discussion 

 The persistence of MCV is believed to be due to the immune evasion 

proteins. The molecular mechanism of MC159 has been well characterized, while 

the molecular mechanism of MC160 is poorly understood. It is important to 

further study and evaluate the immune evasion proteins of MCV in order to 

understand the viral pathogenesis of MCV.  

 DEDs play an important role in the immune evasion of MCV to inhibit the 

innate immune response. The RxDL motif of the DED is believed to be involved 

in the binding of these immune evasion proteins to inhibit the immune response 

and is conserved amongst DED containing proteins. Garvey et al. (2002B) has 

already shown knock out mutations of the RxDL motif in MC159 results in a loss 

of function in apoptotic signaling. These mutants lost the ability to inhibit 

apoptosis mediated by Fas and caspase-8. MC160 does not have any anti-

apoptotic function, but the RxDL motif is conserved between these two proteins. 

MC160 is known to inhibit NF-кB signaling and IFN signaling; however the 

molecular mechanism is unknown (Randall et al., 2014). Due to the highly 

conserved nature of the RxDL motifs in DED containing proteins it was 

hypothesized a mutation of the MC160 protein RxDL motif would also result in a 

loss of function for NF-кB and IFN.  

 Wild-type MC159 and MC160 inhibit the phosphorylation of TBK1 to block 

IFN transcription factors (IRF3) expression (Randall et al., 2014). The molecular 

mechanism by which MC160 inhibits TBK1 is not known. However in this thesis it 
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was found that both RxDL DED mutants of MC160 and MC160N inhibit TBK1- 

and MAVS-induced IFN-β expression. Therefore, it can be concluded the RxDL 

motif of MC160 is not required for either MAVS or TBK1-induced IFN-β inhibition. 

An accurate comparison cannot be made between the RxDL motif of MC159 and 

MC160 for these signaling pathways as the MC159 RxDL mutants have not been 

tested for MAVS- or TBK1-induced IFN expression. 

 In addition, the RxDL mutants of MC160N do not inhibit procaspase-8-

induced NF-кB activation at a 1:1 ratio of MC160N RxDL mutants to procaspase-

8. However, at a 2:1 ratio of MC160N RxDL mutants to procaspase-8, 

procaspase-8 induced NF-кB activation was inhibited. MC160 is known to bind 

with procaspase-8.The level of caspase-8 induced NF-кB inhibition was found to 

be dependent on the level of MC160 vector transfected in the cells. The result 

suggests that MC160 is unable to prevent procaspase-8 signaling when present 

at equal concentrations as procaspase-8. However, treating the cells with equal 

concentrations of plasmid DNA does not necessarily result in equal levels of 

protein. The result suggests the inhibition of NF-кB and reduction of 

proinflammatory cytokine production were dependent on the levels of MC160 

protein present and that the RxDL motif of MC160 is not required for procaspase-

8 or RIP-1-induced NF-кB activation. 

 These findings suggest that unlike other DED proteins the RxDL motif of 

MC160 is not required for its function. These results suggest the RxDL motif is 

required for mediating anti-apoptotic function but not for preventing inhibition of 
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NF-кB and IFN-β. The MC160 and MC160N RxDL mutants were not detected at 

similar levels as wild-type proteins by immunoblotting suggesting the RxDL motif 

might be involved in protein folding and stability. As shown in MC159 and MC160 

it is likely the immune evasion proteins of MCV have overlapping inhibitory 

functions on a signaling pathways such as IFN and NF-кB.  

The future experiments for this project would be to mutate other residues 

that might be required for MC160 function such as F25L26 and F122GL123G 

residues that are required for the interaction of caspase-8 and FADD (Yang et 

al., 2005). MC160 interacts with FADD and procaspase-8 but the functionality of 

this interaction is unknown, as MC160 cannot inhibit FADD-mediated apoptotic 

responses (Shisler & Moss, 2001). F25L26 and F122GL123G residues may be 

required for procaspase-8 and FADD interaction.  Therefore, mutating these 

residues might yield information on the molecular mechanism of MC160 and 

determine if FADD/procaspase-8 binding is important for the MC160 protein’s 

ability to dampen host antiviral responses. To prove the RxDL motif has no effect 

on the MC160 protein function immunoprecipitation must be performed to detect 

if these mutants are still able to associate with caspase-8 and FADD. In 

conclusion, the RxDL motif of the MC160 DED-containing protein is not required 

for inhibition of IFN by MAVS or TBK1 or inhibition of NF-кB expression by 

procaspase-8 or RIP-1. 
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