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Abstract 

Studying environmental quality is a challenging task. It is a complicated exercise 

since the environment is constantly influenced by numerous variables such as climate 

change, anthropogenic activities, and unexpected natural disasters. Traditionally, 

exposure to chemical pollutants depended on chemical and physical analysis of 

environmental media. Unfortunately, this approach has not taken into consideration 

bioavailability of the chemical(s) of interest to exposed organisms and/or modification of 

the chemical (bioactivation/detoxification) by the organism. Benthic macroinvertebrates 

(BMIs) have been chosen as bioindicators for numerous environmental biomonitoring 

programs geared towards the assessment of aquatic ecosystems. Biomonitoring requires a 

more subtle measure – a biomarker – which should be dependable, reliable, and specific 

for assessing various ecological issues and human health risks. A wide array of 

biomarkers has focused on sublethal changes at the cellular and molecular levels. Good 

cellular and molecular biomarkers can respond quickly to low concentrations of 

contaminants with some specificity for particular types of contaminants. It is important 

that the mechanism by which they respond to contaminants be understood. This improves 

their reproducibility and provides an understanding of their limitations. In this study, 

various molecular responses exhibited by hemoglobin (Hb) protein from hemolymph of 

larvae of Chironomidae, or chironomids were characterized, in order to develop a 

biomarker for evaluating environmental quality. Hb proteins in the hemolymph of wild 

chironomids were separated by SDS-PAGE and compared to head capsule morphology. 

Results showed unique profiles for different genera and particular bands that identified 
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species. However, some species had multiple profiles. The source of Hb polymorphisms 

observed among wild species was investigated by determining the effect of proteases – 

chymotrypsin, trypsin, and pepsin – and an environmental stressor, cadmium (Cd), on Hb 

profiles. Results showed that individual and/or combination of proteases could account 

for intraspecies Hb protein profiles. However, 3.0 µM Cd generated its own distinct 

profile with upper bands similar to early 4
th

 instar larvae and a loss of lower bands. Cd’s 

mechanism of action was investigated by measuring endpoints associated with Hb 

biosynthesis pathways. Endpoints included porphobilinogen (PBG) synthase activity and 

expressions of genes: hemoglobin IV and VII (Hb IV & VII), ubiquitin (Ub), and 

metallothionein (MT). Results showed that the effect of Cd on Hb protein profiles could 

be explained by inhibition of PBG synthase, up-regulation of Ub and down-regulation of 

Hb IV and VII. Overall, Hb protein profiles could be used to identify different genera and 

some species of wild chironomids. Hb profile polymorphisms could be explained by 

larval stage of development, levels of protease activity and modulation of Hb 

biosynthesis pathways.   
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Introduction 

The adverse effect of environmental stressors is a major concern in the field of 

ecotoxicology – an interdisciplinary branch between ecology and toxicology. 

Ecotoxicology studies the effect of toxic molecules, either in the form of artificial origin 

(organic pesticides, pharmaceutical drugs, and endocrine disruptors) or natural agents 

(heavy metals and polycyclic aromatic hydrocarbons (PAHs), on biological systems 

(Holmstrup et al., 2010; Pauwels et al., 2013). The challenge in ecotoxicological research 

is to develop methods which could accurately identify, detect and characterize the 

biological impact of contaminant exposure for ecological risk assessment (Pauwels et al., 

2013). 

Traditionally, the detection of toxic chemical compounds in an environment of 

interest was conducted through chemical analysis of the water and sediment samples. 

However, relying solely on the chemical analysis of environmental samples does not 

provide any indication of deleterious effects of contaminants on biological systems 

(Brenner et al., 2014; Cajaraville et al., 2000). Therefore, a supplemental bioassay 

approach to the traditional monitoring techniques is necessary, biomonitoring. 

Biomonitoring involves using the response of organisms to assess the degree of 

contamination or “health” of an ecosystem. The response can be based on biochemical, 

physiological, morphological, or ecological measurements (Hare, 1992). However, to 

achieve an accurate measurement of the responses manifested by the organisms require a 

selection of indicator taxa. Among many candidate taxa for biomonitoring of aquatic 

environments, various species of periphyton, benthic macroinvertebrates (BMI), and fish 
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have received much attention (Li et al., 2010). The United States Environmental 

Protection Agency (USEPA) has established bioassessment protocols for select indicator 

organisms as well approaches for monitoring changes in water quality, population 

numbers, community composition, or ecosystem functioning with empirically defined 

reference conditions (Barbour et al., 1999). More subtle approaches could also be 

conducted – such as observing morphological abnormalities of antennal and mouthpart 

deformities found on head capsules of chironomids (Diptera: Chironomidae) caused by 

various anthropogenic stressors in aquatic systems (Madden et al., 1992; Martinez et al., 

2003; Swansburg et al., 2002; Warwick,1985).   

Biomarkers can be incorporated into biomonitoring in order to assess possible 

impacts of stress on indicator organisms more precisely. Biomarkers are defined as 

measurements in body fluids, cells, or tissues that can indicate biochemical or cellular 

modifications resulting from the presence of toxicants or stress. This definition was later 

modified to take into account characteristics of organisms, populations, or communities, 

including behavior, in which measureable responses reflect changes to the environment. 

The concept of the biomarker approach for assessing adverse effects or stress is based on 

the hypothesis that the effects of stress are typically manifested, first at lower levels of 

biological organization, before disturbances are realized at the population, community, or 

ecosystem levels. Thus, the biomarkers measured at the molecular or cellular level have 

been proposed as sensitive ‘early warning’ signals of specific detrimental biological 

endpoints that may occur at later response levels (Cajaraville et al., 2000; Brenner et al., 

2013; Hauser-Davis  2012; Nogueira et al., 2010).  



- 3 - 

 

Among many biomarkers used in biomonitoring programs, the following have 

received special attention: metallothionein induction, acetylcholinesterase inhibition, 

cytochrome P450 system induction, imposex, lysosomal enlargement and lysosomal 

membrane destabilization, and peroxisome proliferation. These biomarkers can be used to 

evaluate exposure to and effect of different contaminants. For example, metallothionein 

for heavy metals and acetylcholinesterase inhibition and cytochrome P450 induction for 

organic xenobiotics and organometallic compounds (Cajaraville et al., 2000). However, 

even well-established biomarkers could face challenges and limitations, such as 

variability, costs for analyses, and laboratory errors which would potentially lead to 

misinterpretation of data and never achieving their full potential (Mayeux, 2004). 

Therefore, a clear understanding of mechanism of action of the biomarker of choice is 

necessary for making an accurate ecological risk assessment. 

The goal of this study is to characterize hemoglobin (Hb) proteins found in 

hemolymph of larvae of Chironomidae at the molecular level as a potential biomarker for 

evaluating environmental quality. The larvae of Chironomidae, commonly called 

chironomids or bloodworms, are usually a major component of the BMI community. 

They are abundant and distributed globally, live in almost any aquatic habitat, tolerate a 

wide range of salinities and form an integral part of the diet for both vertebrate and 

invertebrate organisms – placing them in an important position in the aquatic foodweb. 

Therefore, chironomids have been frequently used for assessment of both acute and 

sublethal toxicity of contaminated sediments and water (Epler, 2001). Chironomids are 

holometabolous insects that pass through four distinct stages in their life cycle. They 
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spend the greatest part of their life cycle in larval form (Chetelat et al., 2008; 

Ebrahimnezhad & Fakhri, 2005). Worldwide, there may be more than 10,000 species of 

chironomids (Armitage et al., 1995). Their distribution is closely related to dissolved 

oxygen, organic matter, temperature, and different degrees of water depth – different 

species of larvae can live in/on sediments and vegetation (Das & Handique 1996; Epler, 

2001; Ebrahimnezhad & Fakhri, 2005). Methods for culturing and testing are established 

by the USEPA, which has a standard protocol, Ecological Effects Test Guideline, for 

testing toxic sediments using chironomids (USEPA, 1996).   

One of the striking traits of chironomids is that they have Hb – an oxygen 

molecule carrier. Hb proteins in invertebrates are complex and have different overall 

architectures. In chironomids, Hb proteins are synthesized by the insect’s fat body and 

secreted directly into hemolymph starting in the second instar (Bergtrom et al., 1976). 

Concentrations of Hb proteins gradually increase as the larvae reach later instars 

(Bergtrom et al., 1976; Schin et al., 1974). Due to high concentrations of Hb in 

hemolymph (Tichy, 1975), large amounts are easily obtained from individuals for 

research purposes (Bentivegna et al., 2009). The abundance and presence of Hb in 

chironomids is physiologically relevant. They allow the larvae to sustain aerobic 

metabolism under adverse environment conditions such as polluted and hypoxic 

sediments (Lee et al., 2006; Saffarini et al., 1985). Hb proteins in the genus, Chironomus, 

show a high degree of polymorphism in addition to a high affinity for oxygen (Osmulski 

& Leyko, 1986). Hb polymorphism is stage-, species-, and tissue-specific, where 

different species have different numbers of Hbs. For example, Chironomus thummi has as 
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many as 10 and Chironomus tentans has up to 14 Hb proteins (Bergtrom et al., 1976; 

Schmidt et al., 1988; Vafopoulou-Mandalos & Laufer, 1982). The architecture of the Hb 

molecule includes one (monomer) or two subunits (dimer) per molecule instead of the 

four typical of vertebrates (Das & Handique, 1996; Osmulski & Leyko., 1986; Wollmer 

et al., 1972). The heterogeneity characterizing chironomid Hbs may be adaptive to 

exogenous and endogenous factors. This is demonstrated by the markedly higher 

contribution of dimeric Hbs in hemolymph of summer larvae compared to spring larvae 

of Chironomus thummi thummi (Osmulski & Leyko, 1986).    

Our laboratory has been studying chironomid Hb as a biomarker for 

environmental contaminants. Previous studies indicated that Hb polymorphisms might be 

useful for molecular taxonomy of wild chironomids and detection of environmental 

contaminants in the field (Bentivegna et al., 2009; Oh, 2009). The data presented in those 

studies conveyed two vital pieces of information.  

First, each genus of chironomids appeared to have one or more characteristic Hb 

protein profiles when matched with corresponding head capsule analysis. Head capsule 

morphology of chironomid larvae has been a principle means for taxonomically 

identifying larval species (Cranston, 2000; Epler, 2001). Determining the species of 

chironomids is important since there is substantial variation among species in their 

response to environmental change; species-level identification provides the most relevant 

data when using population and community level parameters to evaluate a study site 

(Carew et al., 2003). However, there are many challenges faced when relying on head 

capsule morphology alone for taxonomic identification. For example, it can require a 
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high level of taxonomic skill and large-scale routines often lead to misidentifications 

even when identification is restricted to genera, families or orders (Carew et al., 2003; 

Epler 2001; Pfenninger et al., 2007). Therefore, Hb protein profiles detected by SDS-

PAGE might provide a simplified but accurate method for taxonomic identification of 

wild chironomids that would facilitate their use in field work. 

Second, the Hb protein profiles, regardless of species, were modulated by 

cadmium toxicity – showing changes in the patterns of different molecular weight bands. 

Cadmium (Cd) was chosen for laboratory studies as it is a representative toxic heavy 

metal commonly found in urbanized waterways and because its concentrations exceeded 

EPA sediment standards at Kearny Marsh, NJ where some of our field work with 

chironomids had been conducted (Bentivegna et al., 2004). Acute Cd toxicity tests 

showed that there was a loss of both small and large molecular weight proteins, when 

exposed to high concentration of Cd. A key finding of the study was that Hb protein 

profiles among genera could exhibit different profiles, but display similar sensitivity to 

Cd where there was a consistent concentration response observed on SDS-PAGE 

(Bentivegna et al., 2009). This finding suggested that there could be a link between Hb 

proteins in the wild population and Cd exposure.   

Overall, our previous findings led us to believe that the polymorphisms observed 

among wild population was likely due to a unique genetic history, causing changes in the 

overall structure of Hb protein synthesis over multiple generations. It appeared that each 

individual species could have evolved its own way of processing the Hb protein synthesis. 

In the case of modulation of Hb protein profiles upon exposure to Cd, the changes in the 
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profiles could be exerted by adverse effects of Cd on Hb protein synthesis. This 

suggested that Hb profiles had potential as a biomarker for heavy metal toxicity and 

evaluating environmental health. Overall, it appeared that a more clear understanding of 

the mechanisms associated with chironomid Hb polymorphisms was needed in order to 

validate its usefulness for species identification and as a biomarker of environmental 

stressors.    

In this study, comprehensive research on Hb proteins was carried out to explore 

the essence of Hb proteins with the intention of developing it as a true multi-functional 

biomarker for fieldwork research. We begin by describing how Hb proteins could 

contribute to the development of a novel means of identification of wild chironomid 

species collected from two locations in Maine and New Jersey, USA. Their Hb proteins 

in the hemolymph were separated by SDS-PAGE and Hb protein profiles were generated. 

The technique described here supports and supplements the current standard method of 

taxonomic identification using larval head capsule morphology or even other methods 

such as PCR-based approaches. This study further investigates the potential role of 

endogenous proteolytic enzymes – chymotrypsin, trypsin, and pepsin – on Hb protein and 

how activity of individual and/or combination of proteases could produce distinct Hb 

protein profiles of the wild population. It appeared that there is a possible connection 

between Hb protein polymorphism and the enzymatic activity. Lastly, molecular 

mechanisms examining the response of Cd during heme biosynthesis pathway is 

delineated. More specifically, the response of key genes and an enzyme involved in the 

pathway are described upon exposure to Cd. 
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Materials and methods 

Description of sampling sites  

Chironomids were collected from four different sampling sites, comprised of one 

river and three wetlands, all located on the east coast of the United States during summers 

of 2007, 2008, and 2012. Two sites were from the state of New Jersey and the other two 

sites were from the state of Maine. Kearny Marsh (KM) (latitude: 40.756035, longitude: -

74.125314) of the New Jersey Meadowlands is located between the Passaic and 

Hackensack Rivers and is surrounded by major highways such as Interstate 95. High 

levels of toxic heavy metals have been found in this marsh (Bentivegna et al. 2004). 

Rahway River (RR) (latitude: 40.750402, longitude: -74.259387) is located in a 

residential area in Essex County of New Jersey. Chironomids were collected from the 

east branch which runs through the town of South Orange. North East Creek (NEC) 

(latitude: 44.417107, longitude: -68.31316) and Bass Harbor (BH) (latitude: 44.24071, 

longitude: -68.346591) are located in Mount Desert Island, Maine, with close proximity 

to sea water. Both sites are near Acadia National Park, which is considered to be a 

relatively pristine area when compared to the New Jersey watershed (USEPA, 2010ab). 

 

Chironomid collection 

Chironomids in Maine were collected using a Hester-Dendy sampler (Wildco, 

Yulee, FL) or by hand picking them from rocks and aquatic vegetation. Chironomids in 

KM were collected using Hester-Dendy, while those in the RR were collected using 

Surber samplers (Wildco). The live larvae were placed into a Ziploc bag containing site 
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water and transported back to the laboratory in a cooler. One to four hours transpired 

between chironomid collection and Hb protein collection (see below). In addition to the 

wild larvae, investigations included a laboratory strain of Chironomus riparius 

(Environmental Consulting & Testing, Superior, WI) that was cultured and maintained 

under controlled conditions in our laboratory. The laboratory population was used for life 

stage and Cd toxicity studies (see below). The larvae used in these studies were reared 

from a single egg mass deposited by adult flies. 

 

Water quality  

The following water quality parameters were measured at KM, NEC, and BH: 

temperature (°C), pH, dissolved oxygen (mg/L), salinity (ppt), and redox potential (mV). 

The parameters were measured using a YSI meter, model 556 (YSI Environmental, 

Yellow Springs, OH). Water quality parameters at RR sites included temperature (°C), 

pH, dissolved oxygen (DO mg/L), and hardness (mg/L). Hardness and dissolved oxygen 

were measured using LaMott testing kits (Carolina Science and Math, Burlington, NC). 

The pH was measured using a Corning pH M240 (Corning Science Products, Corning, 

NY).  

 

Species identification 

Head capsules and their corresponding body were collected for hemoglobin 

analysis and species identification. The process involved decapitation of live larvae such 

that hemolymph was drained and collected as described below. After collection of 
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hemolymph, the head capsule and remaining body of a particular chironomid were stored 

in 70% ethanol until mounting. Permanent mounting was performed according to Epler 

(2001). All mounted head capsule samples were keyed to the lowest possible taxonomic 

unit based on larval body morphology and head capsule morphology keys (Epler, 2001). 

Representative mounts of head capsules were sent to Epler for identification. 

 

Preparation of hemolymph samples and SDS-PAGE 

Hemolymph was extracted from each larva by decapitation and bleeding out onto 

a microscope slide. Immediately, approximately 2 µL of hemolymph was drawn up and 

transferred into a 1.5 mL centrifuge tube containing 14 µL of lithium dodecyl sulfide 

(LDS) sample buffer (Invitrogen, Carlsbad, CA), 2 µL of 8M of urea (Qiagen, Valencia, 

CA) and 2 µL of 2-mercaptoethanol (Sigma Chemical Co., St. Louis, MO). The samples 

were stored at -20 °C until use. SDS-PAGE involved separating a 5 µL aliquot of 

hemolymph protein mixture on 16.5% Tris-Tricine gels (BioRad, Hercules, CA) under 

denaturing conditions using 1X Tris/Tricine/SDS electrophoresis buffer (Biorad). All 

hemolymph samples in LDS sample buffer were boiled prior to loading. The protein 

concentration of the hemolymph samples used to generate Hb protein profile indices (see 

below) and protease digestions (see below) was not measured prior to SDS-PAGE 

separation. However, the protein concentrations of all other hemolymph samples 

including C. riparius instar Hb proteins (see below) and 96 hour acute Cd toxicity test 

(see below) were first analyzed using Bicinchoninic Acid Kit, following the 

manufacturer’s protocol (Sigma) prior to SDS-PAGE separation. This ensured that 
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approximately 200 and 1500 µg of total protein per sample was loaded and separated by 

SDS-PAGE for instar Hb proteins and 96 hour acute Cd toxicity test, respectively. 

SeeBlue® Plus2 Protein Standard (Invitrogen) was used as a molecular weight ladder. 

The gel was run at 100 V followed by gel washing, fixing, staining, and drying steps. 

Gels were washed in ddH2O and then fixed in a fixing solution containing 50 % 

methanol (Pharmco-Aaper, Brookfield, CT), 7 % glacial acetic acid (Pharmco-Aaper), 

and 43% ddH20. After fixation, the gel was washed with ddH2O and stained with Gel 

Code Blue (Pierce, Rockford, IL). The gel was de-stained by boiled ddH2O.The gel was 

dried on blotting paper using a gel dryer. All gels were then scanned and imaged (see 

below).  

 

Liquid chromatography-mass spectrophotometry (LC-MS) proteomic analysis 

To verify that the proteins contained in particular SDS-PAGE bands were indeed 

hemoglobin, four prominent bands ranging from 5 to 12.5 kDa were excised and tested 

using LC-MS proteomic analysis. This was done using standard protocols at the 

Biological Mass Spectrometry Facility of the Center for Advanced Biotechnology and 

Medicine of Robert Wood Johnson Medical School and Rutgers, the State University of 

New Jersey. The LC-MS data were searched against a subset of Uniprot database with 

entries containing the keyword “Chironomidae” and CRAP.fasta (www.theGPM.org) and 

using a local version of the Global Proteome Machine (GPM cyclone, Beavis Informatics 

Ltd, Winnipeg, Canada). 
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Hemoglobin protein band pixel quantification 

The gel was scanned using a Gel Doc-It Imaging Transilluminator System (UVP, 

Upland, CA). The picture was loaded onto VisionWorksLS program (UVP) for 

quantification analysis of the bands. In order to measure each band in a single lane, a 20 

band system was developed using different molecular weights ranging from 4 kDa to 17 

kDa. Pixel intensity of each band within the 20 band system was initially quantified as a 

raw score and then further normalized by subtracting the background pixel intensity – a 

blank space in each lane. The relative intensity ratio for each band was determined by 

dividing the normalized pixel by the highest pixel found in that lane. Only the bands with 

relative intensity of 30% or greater were considered in this study as bands of interest.  

 

Hemoglobin protein molecular weight determination 

For each hemolymph sample separated on SDS-PAGE gels, molecular weights 

were determined for all Hb bands in a single lane (Hemes 1998). Relative mobility (Rf) 

for each protein was determined using the formula: Rf = distance of protein 

migration/distance of dye migration. A standard curve was generated for each gel by 

plotting Rf versus log scale of the molecular weights (log MW) of protein standards. 

Finally, Rf value of each Hb protein in a single lane was used to estimate its molecular 

weight by interpolation to the standard curve. The ladder for SDS-PAGE contained the 

protein standards. Information on their molecular weights was provided by the 

manufacture’s protocol (Invitrogen).  
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Hemoglobin protein profiles 

Hb protein profiles consisted of one or more bands from a particular larva. They 

were associated with their corresponding head capsules, which were identified to the 

lowest possible taxonomic level using head capsule morphology. Hb protein profiles of 

all taxa were compared for uniqueness. Amino acid sequencing has shown that major Hb 

proteins have molecular masses in the range of 16 and 17.5 kDa; therefore, bands below 

7 kDa were thought to be Hb protein degradation products, and were excluded from all 

comparisons.  

 

Bright field imaging of chironomid head capsules 

Each mounted head capsule of a chironomid was viewed using a 10X objective 

lens on a Zeiss Axioskop microscope (Carl Zeiss Ltd, Cambridge, United Kingdom). 

Images were captured using a Leica DFC 300 FX digital camera (Leica Camera Inc, 

Allendale, NJ). The entire head capsule could not be imaged in a single field of view 

using this objective, so two overlapping areas were collected (the superior and inferior 

portions of the head capsule) and a panoramic montage was created using the 

Photomerge function in Photoshop CS5 (Adobe Systems Incorporated, San Jose, CA) to 

generate a complete image of a head capsule. Additionally, for each area, 15 to 20 images 

from successive focal depths were collected and three dimensional montages for each 

portion of the head capsule were generated using the Do Stack function in CombineZP 

URL (http://www.hadleyweb.pwp.blueyonder.co.uk/).  
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Comparison of stage-specific Hb protein profile  

Chironomids from a single egg mass were collected every three days starting at 

approximately 6 days after hatching and continuing through pupation and emergence of 

the adult. At each time point, three hemoglobin samples were generated. Each sample 

consisted of the combined hemolymph of five individuals. All individuals collected at the 

first time point (6 days) had visible red pigment on the thoracic segments including the 

head capsule, when viewed under the dissecting microscope (Parco Scientific Company, 

Westland, MI). Head capsules were collected from the same individuals used for 

hemolymph analyses. The widths of the head capsules were measured in order to 

determine larval instar using methods previously described (Watts & Pascoe, 2000). 

Hemolymph from pupae and adult flies were collected the same way as from larvae and 

was separated by SDS-PAGE as described above. 

 

Hemoglobin protease digestion  

Hemolymph collected from 10 laboratory strain C. riparius was artificially 

digested with chymotrypsin, trypsin, and pepsin (Sigma). The concentrations of proteases 

were as follow: 0.1 mg/mL of chymotrypsin, 1.0 mg/mL of trypsin, and 1.0 mg/mL of 

pepsin. For chymotrypsin and trypsin digestion, 15 µL of hemolymph was digested with 

5 µL of protease and incubated in 30 µL of assay buffer 1 containing 20 mM Tris-HCl 

and 10 mM CaCl2 with pH=8.5 at 37 °C. For pepsin digestion, assay buffer 2 containing 

0.084N HCl and 35 mM NaCl with pH=2 (Thomas et al., 2004) was used. 10 µL of 

digested hemolymph was collected at 5, 30, and 60 minutes, transferred to a fresh tube 
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containing 10 µL of LDS buffer, and immediately stored at -20 °C. To verify the actual 

protease activity, 5 µL of specific inhibitors, 2 mg/mL of aprotinin (Sigma) for 

chymotrypsin and trypsin, and 2 mg/mL of pepstatin A (Sigma) for pepsin, were used. 

The digested hemolymph samples were separated via SDS-PAGE to generate Hb protein 

profiles (see above). 

      

96 hour acute cadmium toxicity test 

Laboratory cultured larvae of C. riparius were reared to third or early 4
th

 instar 

from the same fertilized egg masses.  From the total population, 30 larvae were randomly 

picked and used for each concentration – 0, 0.3, and 3.0 µM Cd (Sigma) for 96 hours.  

This corresponded to 0, 55, and 550 µg/L, respectively. Acid-washed sand was provided 

as a substrate and larvae were fed daily.  The test water was obtained by making 

reconstituted water (USEPA, 2006) from the ½ deionized water (Millipore Milli-Q, 

Billerica, MA) and ½ filtered tap water with reagent grade chemicals: NaHCO3, CaSO4, 

MgSO2, and KCl (Sigma). The test water (250 ml) was added to 1 L polypropylene 

containers, and CdCl2 was spiked into it from a stock concentration. The test water was 

aerated, changed every 24 hours, and a new spike was added. At 96 hour, the average 

hardness of the reconstituted water was between 160 to 180 ppm, the average pH was 

between 7.2 to 7.4, the average temperature was between 20 to 21 °C, and the dissolved 

oxygen was between 7 to 9 ppm. Chironomids were exposed to the following 

concentrations of Cd: 1) control; nominally 0 µM, actual value measured in-container: 

0.0215 ± 0.0334 µM, 2) 0.3; nominally 0.3 µM, actual value measured in-container: 
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0.0681 ± 0.043 µM, and 3) 3.0; nominally 3.0 µM, actual value measured in container: 

0.64 ± 0.0639 µM. All water samples were prepared by following the EPA/600/4-91/010 

under Method 200.7 and analyzed by inductively coupled plasma mass spectrometry 

(ICP-MS) at Environmental and Occupational Health Sciences Institute, Rutgers, the 

State University of New Jersey. Chironomids were collected for Hb protein (see above), 

porphobilinogen synthase assay (see below), and gene expression study (see below) at 12, 

24, 48, 72, and 96 hours. Three independent experiments (indicated by trial numbers I, II, 

and III) were conducted. Each independent experiment included an analysis of Hb protein 

profile, porphobilinogen synthase activity, and quantitative polymerase chain reaction of 

the genes of interest.    

 

Porphobilinogen (PBG) synthase Assay 

Three larvae were collected from each test vessel and plotted dry using tissue 

wipers (VWR, Radnor, PA) and placed into 500 µL of chilled 100 mM potassium 

phosphate buffer (pH 6.5) and completely homogenized using a glass 2 mL tissue grinder 

(Fisher Scientific, Waltham, MA). The homogenate was transferred into a 1.5 mL 

microcentrifuge tube (VWR, Radnor, PA) and 400 µL was transferred to a clean tube, for 

the PBG synthase assay. This left 100 µL of homogenate for protein quantification using 

the Bicinchoninic Acid assay (see below). To the 400 µL of homogenate, 10 µL of 

dithiothreitol (DTT) (Sigma) was added and the sample was vortexed. The sample was 

then incubated at 37 ºC for 10 min using an IncuBlock heat block (Denville Scientific, 

South Plainfield, NJ). Following incubation, 100 µL of 100 mM of the substrate, amino-
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levulinic acid (ALA) (Frontier Scientific, Logan, UT), was added to the sample. This 

solution was incubated for 60 min at 37 ºC in order to generate the product, 

porphobilinogen (PBG). Next, the amounts of PBG generated were determined using a 

modified Ehrlich’s assay. This involved adding 500 µL of 10% trichloroacetic acid (TCA) 

(Sigma) containing 100 mM HgCl2 (Alfa Aesar, Ward Hill, MA) to each sample and 

vortexing. The samples were then centrifuged using a Biofuge 13 centrifuge (Heraeus, 

Hanau, Germany) for 5 min at 10,000 RPM. Next, 500 µL of modified Ehrlich’s reagent 

[2% dimethylaminobenzaldehyde (DMAB, Mallinckrodt, Phillipsburg, NJ) in 5N HCl] 

was added to 500 µL of each supernatant. Samples were inverted several times and 

incubated at room temperature for 10 min. After 10 min, the absorbance was taken at 

OD555nm using Spectramax M5 plate-reader (Molecular Devices LLC, Sunnyvale, CA). 

All values were normalized to the total protein mass which was measured by 

Bicinchoninic Acid (BCA) solution (Sigma). The same homogenate (100 µL) prepared 

for the PBG synthase assay was used to determine the total protein mass. The final units 

were reported as µmol/µg protein.  

 

RNA isolation and quantitative polymerase chain reaction (qPCR) 

Total RNAs were extracted by homogenizing three larvae in TRIzol (Invitrogen). 

From the total RNAs, a cDNA library was constructed using oligo-dT primers (Applied 

Biosystems, Foster City, CA). The cDNA was used as a template to amplify genes of 

interest with PCR. Genes targeted for quantification included β-actin (GenBank: 

AB070370), hemoglobin protein IV (Hb IV, GenBank: X00920), hemoglobin protein VII 
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(Hb VII, GenBank: U01342), ubiquitin (Ub, see below) and metallothionein (MT, 

GenBank: HQ260607). StepOnePlus System 96-well PCR instrument (Applied 

Biosystems) carried out each qPCR run. Sequences of the primer sets are provided in 

Table 6. For each qPCR run, the ∆∆Ct method was chosen to calculate relative gene 

expression, and all data were normalized against β-actin, as a housekeeping gene (Livak 

2001). Samples were analyzed in triplicate for each gene and compared to corresponding 

12 hour control. All Melt curves were generated for each qPCR run to validate a single 

product formation. The product size was verified by agarose gel electrophoresis. 
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Table 1. Primers used to amplify specific genes. 

Gene Primer sequence 

Product size 

(bp) 

Tm 

(°C) 

GenBank 

Accession No. 

β-

actin  

5'GTCGCGATTTGACTGACTACTT3' 
122 62 AB070370 

5'GTCCAATGCAACATAGCACAAC3' 

        
 

Hb IV 
5'CTCGACTCAATCAAGGGATCAG3' 

90 62 X00920 
5'GTTTGGAAGGTCTCCGATGAT3' 

        
 

Hb 

VII 

5'GAAATCCTTGCTGCTGTCTTTG3' 
103 62 U01342 

5'CGAATGCACCAGTATCCTTGA3' 

        
 

Ub 
5'ATCAGACAATGTACGACCATCTT3' 

126 62 N/A 
5'GTTGAGCCATCAGACACCATT3' 

        
 

MT 5’GGGCTGCAAATGTTGTTCACA3’ 130 55 HQ260607 
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Cloning and sequencing of Ubiquitin 

The sequence for Ub was not available in NCBI, and it was necessary to generate 

degenerative primer sets for Ub gene in order to develop gene specific primers for qPCR. 

Degenerative primers were generated based on the available known Ub sequence 

homology among six closely related species: Aedes aegypti (GenBank: XM_001664216), 

Anopheles funestus (GenBank: DQ910360), Anopheles stephensi (GenBank: AJ415521), 

Culex quinquefasciatus (GenBank: XM_001864341), Drosophila melanogaster 

(GenBank: M22428), and Papilio xuthus (GenBank: AK401158). Using degenerative 

primers, PCR was performed and multiple bands of the anticipated size were observed on 

an agarose gel stained with ethidium bromide. The bands were extracted from the agarose 

gel using QIAEX II Gel extraction Kit (Qiagen). The cloning was done using TOPO TA 

Cloning kit (Invitrogen). The purified PCR product was ligated into TOPO® vector and 

transformed into Transform One Shot® TOP10, chemically competent E.coli cells. The 

cells were spread on LB-plate containing 50 µg/mL Kanamycin sulfate (Invitrogen), 200 

mg/mL IPTG (isopropyl-beta-D-thiogalactopyranoside) (Invitrogen), and 20 mg/mL X-

gal (Invitrogen). Plasmid DNA was isolated and amplified with the gene-specific forward 

primer and M13R vector primer. The PCR product was separated by agarose gel and the 

band was extracted from the agarose gel using gel extraction kit. The purified plasmid 

PCR product was confirmed by commercial sequencing (GeneWiz, Plainfield, NJ). A 

gene specific primer set for Ub was generated using the confirmed nucleotide sequence 

information. 
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Statistical analyses 

The results are reported as the mean ± SD and repeated thstatistical tests were 

performed using GraphPad Prism5 (GraphPad Software, La Jolla, CA). Statistically 

significances were established at p<0.05 for (*), p<0.01 for (**) and p<0.001 for (***) 

and determined by One-way ANOVA followed by Dunnett’s multiple comparison test or 

Bonferroni’s Multiple Comparison Test.   
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Results 

Water quality of the sampling sites 

Water quality parameters of the four sites at the time of chironomid collection are 

shown in Table 2. KM stood out as having water temperatures approximately 8 °C 

warmer than the others and supersaturated DO. The redox of KM was slightly higher as 

well but had a wide range, 21.9 – -153 mg/L. These factors indicated a eutrophic 

environment at KM. The pH averages at KM, RR, NEC, and BH were 8.29, 7.10, 6.39, 

and 6.33, respectively. Salinity averaged higher at BH and KM, 2.90 and 1.71 ppt, 

respectively, and lower at NEC, 0.65 ppt. RR was a freshwater site and hardness 

averaged 180 ppm. 
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Table 2. Range of water quality parameters at the four chironomid collection sites.  

Site 
Temperature 

(°C) 
pH DO (mg/L) 

Salinity 

(ppt) 

Hardness 

(ppm) 

Redox 

(mV) 

KM (NJ) 26.70 – 30.30 7.49 – 8.59 7.32 – 11.90 1.73 – 1.74 NA 21.9 – -153  

RR (NJ) 21.0 – 22.0 6.80 – 7.40 2.20 – 9.40 NA 120 – 240 NA 

NEC (ME) 19.40 – 21.0 5.92 – 6.86 5.57 – 6.60 0.45 – 0.84 NA -106 – -114 

BH (ME) 18.4 – 21.7 6.16 – 6.49 6.02 – 6.28 2.10 – 3.70 NA -45 – -142 

DO, Dissolved oxygen; Redox, Reduction and oxidation potential; NA, Not available; 

KM (NJ), Kearny Marsh, New Jersey; RR (NJ), Rahway River, New Jersey; NEC (ME), 

North East Creek, Maine; BH (ME), Bass Harbor, Maine 

The table was adopted from Oh et al., 2014. 
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Chironomid head capsule identification 

Sixty-six chironomids were analyzed for head capsule morphology (Table 3). 

This included one group – Thienemannimyia and four genera – Chironomus, Cricotopus, 

Dicrotendipes and Glyptotendipes. Within the four genera, there were four described 

species and three unidentifiable species based on head capsule morphology. Those not 

identified to species were denoted as “sp.” or named after the region in which the 

chironomid was found – “sp. ME1” for an unknown species collected in Maine. 
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Table 3. Chironomid taxonomy based on head capsule morphology. Chironomids were 

collected from four different sampling sites during 2007 to 2012. n = total number of 

chironomids analyzed for a particular species. Subfamily of each species is also provided. 

Taxonomy Identification Site N Collection Date Subfamily 

Chironomus riparius Meigen KM, RR 14 Jul-07, Aug-12 Chironominae 

Chironomus sp. ME1 BH 9 Aug-08 Chironominae 

Cricotopus bicinctus Meigen RR 3 Sep-12 Orthocladiinae 

Dicrotendipes modestus (Say) RR,NEC,BH 10 Jul-07, Aug-08 Chironominae 

Glyptotendipes paripes Edwards KM 14 Jul-07 Chironominae 

Glyptotendipes sp. KM 14 Jul-07 Chironominae 

Thienemannimyia group sp. RR 2 Sep-12 Tanypodinae 

Site abbreviations as in Table 2 

The table was adopted from Oh et al., 2014. 
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Protein composition analysis by LC-MS 

LC-MS was used to verify protein composition of the bands separated on SDS-

PAGE. Bands at 12.5, 11, 7, and 5.5 kDa were chosen from a hemolymph sample of C. 

riparius (laboratory strain) for LC-MS analysis. The major proteins identified for one of 

the four bands (12.5 kDa) analyzed is shown in Table 4. Information provided includes 

the protein name, molecular mass (kDa), the amino acid length, and the corresponding 

accession numbers in the NCBI database. According to the base peak ion chromatogram, 

isomers of Globin Chironomus thummi thummi (CTT) Hemoglobin-VIIB (CTT-VIIB) 

and Globin CTT-II were the dominant proteins in the 14.5 kDa band and accounted for 

the majority of its intensity. CTT is the former name of C. riparius, the species used for 

this analysis. Similar protein species of Hbs were also observed in the 11, 7, and 5.5 kDa 

bands (data not shown). The LC-MS analysis indicated that the Hb proteins detected in 

these four bands might be breakdown products of the major Hb proteins, as the expected 

sizes of those Hb proteins range from 16.8 to 17.4 kDa, but no bands were found to be in 

this range on SDS-PAGE for C. riaprius. 
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Table 4. LC-MS data of the most abundantly identified proteins in Hb band 5 separated 

by SDS-PAGE. CTT represents Chironomus thummi thummi, which now is called 

Chironomus riparius. AA represents the total number of amino acids in the sequence. 

Protein Name 
Molecular 

Mass (kDa) 
Length (AA) 

Accession number in the NCBI 

database 

Globin CTT-VIIB-4 16.8 161 P84296 

Globin CTT-VIIB-6 16.9 161 P12549 

Globin CTT-VIIB-8 17 161 Q23763 

Globin CTT-II beta 17.4 160 P02222 

  The table was adopted from Oh et al., 2014. 
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Comparison of head capsule and corresponding Hb protein profile index 

The head capsule of wild Chironomus riparius and its associated Hb proteins 

generated by SDS-PAGE were compared (Fig. 1). An important landmark of C. riparius 

head capsule was three dark inner teeth on the mandible (Fig. 1a). According to the head 

capsule morphology, we determined that all individuals analyzed appeared to be the same 

species, regardless of the sampling sites, KM (n=2) and RR (n=4). C. riparius had three 

varying Hb protein profiles – P1, P2 and P3 (Fig. 1b). P1 was obtained from a 

chironomid collected in RR whereas P2 and P3 were from KM. All three profiles shared 

bands at 14.5, 12.5 and 11 kDa. Both P1 and P2 had an extra band at 11.5 kDa, and P3 

showed an absence of bands at 15.5 and 11.5 kDa. P1 did not have bands below 11 kDa, 

whereas both P2 and P3 did.  

An unidentifiable species of wild Chironomus was collected only at BH and was 

denoted as Chironomus sp. ME1. The head capsule of this species had two dark inner 

teeth on the mandible and a significantly downsized outer tooth on the mentum (Fig. 2a) 

– traits which are atypical of C. riparius. There was only one Hb protein profile (P4) 

found in all individuals of Chironomus sp. ME1, n=9 (Fig. 2b). P4 had three bands at 

15.5, 14.5, and 11.5 kDa.  

Cricotopus bicinctus was collected at RR (n=3). The most prominent feature on 

the head capsule was the jagged edges of the molar margin of the mandible (Fig. 3a). 

Interestingly, C. bicinctus displayed a Hb protein profile (P5) containing only one band at 

17 kDa (Fig. 3b). P5 was found in all three individuals of this species. 



- 29 - 

 

Dicrotendipes modestus was found at NEC (n=3), BH (n=1), and RR (n=6). The 

main distinguishable characteristic of this species’ head capsule was the striations on the 

ventromental plate: there was a mean of 32 strial ridges (Fig. 4a). The Hb protein profile 

consisted of three distinct bands in the range of 17.5, 15, and 13.5 kDa (Fig. 4b). 

Although D. modestus was found in three different locations, the single Hb protein 

profile (P6) and head capsule morphology were consistent among all individuals 

collected. 

Glyptotendipes paripes was only found at KM (n= 14). Taxonomy of the genus 

Glyptotendipes has been under revision by Michael Heyn; however, the Glyptotendipes 

paripes has been exceptionally well characterized and is, unlike many other 

Glyptotendipes species, usually identifiable in all life stages. Two common features of G. 

paripes head capsule were the smooth anterior margin of the ventromental plate and the 

darkened internal area posterior to the mandible (Fig. 5a). G. paripes had two similar Hb 

protein profiles, P7 and P8, n= 11 and 3, respectively (Fig. 5b). Both profiles shared two 

intense bands, one at 17 kDa and the other at 13 kDa. However, P8 had an extra band at 

16 kDa that was not visible in P7. In addition, P8 lacked bands in the range of 11 to 8 

kDa. 

There was an unidentifiable species of Glyptotendipes found in KM along with G. 

paripes (Fig. 6a). Other than the 13 teeth on the mentum – a well characterized landmark 

of the Glyptotendipes genus – there was a lack of characteristic traits, preventing species-

level identification using head capsule morphology. The smooth anterior margin of the 

ventromental plate and the darkened internal area posterior to the mandible of G. paripes 
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were not visible on this species (Fig. 5a). The head capsule of Glyptotendipes sp. and its 

associated Hb proteins were compared (Fig. 6). This unidentified species of 

Glyptotendipes had three varying Hb protein profiles (Fig. 6b). All three profiles, P9, P10 

and P11 were obtained from chironomids collected in KM, n = 4, 8, and 2, respectively. 

All three profiles shared four bands at 17, 16, 14, and 13 kDa with varying intensity. P9 

and P11 did not have bands in the range of 11 to 8 kDa, whereas P10 had multiple bands 

in that range. P11 had an extra band at 15 kDa that was absent in both P9 and P10.  

The last species studied was a member of the Thienemannimyia group, a complex 

of several closely related genera of the subfamily Tanypodinae. Larvae of this group are 

difficult or impossible to identify to genus without an associated pupa or adult male. The 

individuals collected in this study at RR (n=2) could not be identified to the genus or 

species-level. The head capsule of Thienemannimyia group sp. and its associated Hb 

proteins were compared (Fig. 7). The head capsule morphology of Thienemannimyia 

group sp., which is typical for the subfamily Tanypodinae, was strikingly different from 

the other genera and species found in this investigation (Fig. 7a). There was only one 

corresponding Hb protein profile, P12, found in the two individuals collected (Fig. 7b). 

 

 



 

 

Fig. 1 Comparison of head capsule with Hb proteins of 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profiles 1 – 3 (P1, P2, and P3, respectively). 

dark inner teeth indicated by the solid arrow (a). One species was

head capsule morphology (a) and three Hb profiles (b). P1 was found in all chironomids 

collected in Rahway River, NJ, n=4. P2 and P3 were in chironomids collected in Kearny 

Marsh, NJ, n= 5 for each profile.

= 100 µm.   
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Comparison of head capsule with Hb proteins of Chironomus riparius

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

3 (P1, P2, and P3, respectively). C. riparius has a mandible with three 

dark inner teeth indicated by the solid arrow (a). One species was associated with one 

head capsule morphology (a) and three Hb profiles (b). P1 was found in all chironomids 

collected in Rahway River, NJ, n=4. P2 and P3 were in chironomids collected in Kearny 

Marsh, NJ, n= 5 for each profile. The figure was adopted from Oh et al., 2014.

 

Chironomus riparius.  Presented 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

has a mandible with three 

associated with one 

head capsule morphology (a) and three Hb profiles (b). P1 was found in all chironomids 

collected in Rahway River, NJ, n=4. P2 and P3 were in chironomids collected in Kearny 

Oh et al., 2014. Scale bar 



 

 

Fig. 2 Comparison of head capsule with Hb proteins of 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profile 4 (P4). Distinctions between 

two dark inner teeth of the mandible indicated by the solid arrow and 

tooth on the mentum indicated by the dotted arrow (a). One species associated with one 

head capsule morphology (a) and one Hb profile (b). This single Hb protein profile was 

found in all individuals of this unknown species collected at Bass

figure was adopted from Oh et al., 2014.
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Comparison of head capsule with Hb proteins of Chironomus sp. ME1.

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profile 4 (P4). Distinctions between C. riparius and this unknown species are the 

two dark inner teeth of the mandible indicated by the solid arrow and a reduced outer 

tooth on the mentum indicated by the dotted arrow (a). One species associated with one 

head capsule morphology (a) and one Hb profile (b). This single Hb protein profile was 

found in all individuals of this unknown species collected at Bass Harbor, ME, n=9.

figure was adopted from Oh et al., 2014. Scale bar = 100 µm.   

sp. ME1. Presented 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

and this unknown species are the 

a reduced outer 

tooth on the mentum indicated by the dotted arrow (a). One species associated with one 

head capsule morphology (a) and one Hb profile (b). This single Hb protein profile was 

Harbor, ME, n=9. The 



 

 

Fig. 3 Comparison of head capsule with Hb proteins of 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profile 5 (P5). The solid arrow (a) indicates the inner teeth of the mandible. One 

species was associated with one head capsule morphology (a) and one H

This single Hb protein profile was found in all individuals of this species, which was only 

found at Rahway River, NJ, n=3.

= 100 µm.     
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Comparison of head capsule with Hb proteins of Cricotopus bicinctus

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profile 5 (P5). The solid arrow (a) indicates the inner teeth of the mandible. One 

species was associated with one head capsule morphology (a) and one Hb profile (b). 

This single Hb protein profile was found in all individuals of this species, which was only 

found at Rahway River, NJ, n=3. The figure was adopted from Oh et al., 2014.

. Presented 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profile 5 (P5). The solid arrow (a) indicates the inner teeth of the mandible. One 

b profile (b). 

This single Hb protein profile was found in all individuals of this species, which was only 

The figure was adopted from Oh et al., 2014. Scale bar 



 

 

Fig. 4 Comparison of head capsule with 

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 6 (P6). The solid arrow (a) indicates the ventromental plate. One 

species was associated with one head cap

all individuals collected. D. modestus 

North East Creek, ME (n=3), Bass Harbor, ME (n=1) and Rahway River, NJ (n=6).

figure was adopted from Oh et al., 20
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Comparison of head capsule with Hb proteins of Dicrotendipes modestus

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 6 (P6). The solid arrow (a) indicates the ventromental plate. One 

species was associated with one head capsule morphology (a) and one Hb profile (b) in 

D. modestus was found at three of the four sites investigated 

North East Creek, ME (n=3), Bass Harbor, ME (n=1) and Rahway River, NJ (n=6).

figure was adopted from Oh et al., 2014. Scale bar = 100 µm.       

Dicrotendipes modestus. 

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 6 (P6). The solid arrow (a) indicates the ventromental plate. One 

sule morphology (a) and one Hb profile (b) in 

was found at three of the four sites investigated – 

North East Creek, ME (n=3), Bass Harbor, ME (n=1) and Rahway River, NJ (n=6). The 



 

 

Fig. 5 Comparison of head capsule with Hb proteins of 

are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profiles 7 and 8 (P7 and P8, respectively). 

the smooth anterior margin of the ventromental plate indicated by the dotted arrow and 

the darkened internal area posterior to the mandible indicated by the solid arrow. One 

species was associated with one head capsule morphology (a) and two Hb protein profiles 

(b).  Both profiles were found in chironomids collected at Kearny Marsh, NJ, n=11 for P7 

and n=3 for P8. The figure was adopted from Oh et al., 2014.
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Comparison of head capsule with Hb proteins of Glyptotendipes paripes

(a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

nd 8 (P7 and P8, respectively). Common traits of G. paripes

the smooth anterior margin of the ventromental plate indicated by the dotted arrow and 

the darkened internal area posterior to the mandible indicated by the solid arrow. One 

sociated with one head capsule morphology (a) and two Hb protein profiles 

(b).  Both profiles were found in chironomids collected at Kearny Marsh, NJ, n=11 for P7 

The figure was adopted from Oh et al., 2014. Scale bar = 100 µm.      

Glyptotendipes paripes. Presented 

(a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

G. paripes include 

the smooth anterior margin of the ventromental plate indicated by the dotted arrow and 

the darkened internal area posterior to the mandible indicated by the solid arrow. One 

sociated with one head capsule morphology (a) and two Hb protein profiles 

(b).  Both profiles were found in chironomids collected at Kearny Marsh, NJ, n=11 for P7 

Scale bar = 100 µm.         



 

 

Fig. 6 Comparison of head capsule with Hb proteins of 

(a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

protein profiles 9 – 11 (P9, P10, and P11, respectively). The solid arrow (a) indicates

larval mentum. One species was associated with one head capsule morphology (a) and 

three Hb protein profiles (b). All three profiles were found in chironomids collected at 

Kearny Marsh, NJ, n=4, 8, and 2, for profiles P9, P10, and P11, respectively.

was adopted from Oh et al., 2014.
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Comparison of head capsule with Hb proteins of Glyptotendipes sp. Presented are 

(a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

11 (P9, P10, and P11, respectively). The solid arrow (a) indicates

larval mentum. One species was associated with one head capsule morphology (a) and 

three Hb protein profiles (b). All three profiles were found in chironomids collected at 

Kearny Marsh, NJ, n=4, 8, and 2, for profiles P9, P10, and P11, respectively.

was adopted from Oh et al., 2014. Scale bar = 100 µm.            

 

Presented are 

(a) head capsule at 10X magnification and (b) molecular weight ladder (L) and Hb 

11 (P9, P10, and P11, respectively). The solid arrow (a) indicates the 

larval mentum. One species was associated with one head capsule morphology (a) and 

three Hb protein profiles (b). All three profiles were found in chironomids collected at 

Kearny Marsh, NJ, n=4, 8, and 2, for profiles P9, P10, and P11, respectively. The figure 



 

 

Fig. 7 Comparison of head capsule with Hb proteins of 

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 12 (P12). The solid arrow (a) indicates a short apical tooth on the 

mandible. One species was associated with one head capsule morphology (a)

protein profile (b). The Thienemannimyia

River, NJ, n=2. The figure was adopted from Oh et al., 2014.
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Comparison of head capsule with Hb proteins of Thienemannimyia group 

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 12 (P12). The solid arrow (a) indicates a short apical tooth on the 

mandible. One species was associated with one head capsule morphology (a)

Thienemannimyia group sp. individuals were collected at Rahway 

The figure was adopted from Oh et al., 2014. Scale bar = 100 µm.      

group sp. 

Presented are (a) head capsule at 10X magnification and (b) molecular weight ladder (L) 

and Hb protein profile 12 (P12). The solid arrow (a) indicates a short apical tooth on the 

mandible. One species was associated with one head capsule morphology (a) and one Hb 

sp. individuals were collected at Rahway 

Scale bar = 100 µm.              
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Hb protein profile comparison  

Profiles of all species were compared to determine if there was any relationship 

between species within a genus or among the different genera (Fig. 8). Band numbers 1 

to 20 represented all of the Hb bands found in the different profiles. The numbers 

matched up with molecular weights ranging from 17.5 to 8 kDa. Profiles of the genus 

Chironomus (P1 – P4) shared a band at 14.5 kDa, regardless of species and collection site. 

Profiles of C. riparius (P1 – P3) shared two more bands: 12.5 and 11 kDa. These bands 

might have been unique to all C. riparius individuals or only to C. riparius in NJ, where 

the individuals with these three profiles were collected. Cricotopus spp. (P5) had one 

band at 17 kDa, which was shared by Glyptotendipes spp. However, the profile of C. 

bicinctus (P5) only had one band at 17 kDa, whereas species of Glyptotendipes had 

multiple bands below 17 kDa. Thus, results indicated that a band at 17 kDa alone might 

identify members of the genus Cricotopus, but other Orthocladiinae must first be 

investigated. Dicrotendipes spp. (P6) had one consistent profile regardless of collection 

site. Those bands at 17.5, 15, and 13.5 kDa were not shared by other genera except the 

one at 15 kDa, which was shared with Glyptotendipes sp. (P11). The band at 17.5 kDa 

was the highest MW band observed and not found in any of the other species. The 

uniqueness of P6 indicated that bands in this profile could be used to identify D. 

modestus. Profiles of the genus Glyptotendipes (P7 – P11) shared two bands at 17 and 13 

kDa. Results indicated that these two bands were characteristic of the genus 

Glyptotendipes, since no other genera found had a band at 13 kDa. Another common 

band in Glyptotendipes was at 16 kDa. It was found in all profiles of the unidentified 
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Glyptotendipes species, P9 – P11, but only 1 of 2 profiles found for G. paripes. 

Distinguishing Glyptotendipes at the species-level may be difficult since the profiles of G. 

paripes (P7 and P8) were not considerably different from those of the unknown species. 

Thinemannimyia group sp. (P12) had one band at 14 kDa which was also found in 

Glyptotendipes sp. (P9 – P11). 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 8 Comparison of all Hb protein profiles.  Bands of each profile (P1 

plotted against molecular weight of Hb protein ra

within a column indicates the presence of a band at that particular molecular weight. 

Band intensity was not considered in this analysis. Profiles are grouped by genus.

figure was adopted from Oh et al., 2014.  

 

 

 

 

 

 

 

 

 

 

 

- 40 - 

Comparison of all Hb protein profiles.  Bands of each profile (P1 – P12) were 

plotted against molecular weight of Hb protein ranging from 17.5 to 8 kDa. A black line 

within a column indicates the presence of a band at that particular molecular weight. 

Band intensity was not considered in this analysis. Profiles are grouped by genus.

figure was adopted from Oh et al., 2014.   

 

P12) were 

nging from 17.5 to 8 kDa. A black line 

within a column indicates the presence of a band at that particular molecular weight. 

Band intensity was not considered in this analysis. Profiles are grouped by genus. The 
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Changes in Hb protein profile during a typical life cycle of C. riparius 

Although the Hb protein profile index corresponded well with head capsule 

morphology, there were multiple profiles for some species, particularly in the genera 

Chironomus and Glyptotendipes. These multiple profiles could complicate the use of this 

technique for taxonomic identification. Therefore, it was investigated whether or not 

developmental stage could account for this observation. To study the influence of 

developmental stage on Hb profiles, hemolymph was collected from a laboratory cohort 

of C. riparius through most of their life cycle. The hemolymph was collected at second 

instar (lane 1), 3
rd

 instar (lane 2), 4
th

 instar (lane 3 – 6), pupa (lane 8), and adult (lane 9) 

(Fig. 9). The instar was based on average head capsule width of larvae contributing to 

each hemolymph sample (Table 5). Head capsule widths measured in this study showed a 

range similar to that found by Watts & Pascoe (2000). 

Results for the developmental study showed stage-specific changes in synthesis of 

Hb protein. A band at 12.5 kDa initially appeared at the late 2
nd

 instar (lane 1, Fig. 9) and 

showed a perpetual synthesis throughout the larval stages that carried into both pupa and 

adult stages. Interestingly, a band at 12.5 kDa was also observed in P1 – P3 of wild C. 

riparius individuals (Fig. 1), indicating that this band might be unique to C. riparius 

species since it was not observed in the unknown Chironomus species (Fig. 2). In 

addition, larvae at the onset of 4
th

 instar (lane 3) showed a banding pattern similar to P3, 

in which a band at 15.5 kDa was missing. This finding indicated that the P3 Hb profile 

found in wild Chironomus might have been from an individual collected at the onset of 

4
th

 instar. Bands below 7 kDa – which were considered to be degraded Hb protein 
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product – appeared during the 3
rd

 instar and remained throughout the larval stages. The 

distinctive profile of C. riparius was observed by the mid 4
th

 instar (lanes 4 – 6), which 

was indistinguishable from those of P1 and P2 found in wild Chironomus (Fig. 1). During 

the transition from larva to pupa (lanes 6 – 8), most of the bands were retained with the 

exception of bands between 4 and 6 kDa in pupa, a newly synthesized band at 16 kDa in 

pupa, and the disappearance of the 15.5 kDa band in adult. Synthesis of the 15.5 kDa 

band completely ceased in adult while the 16 kDa band became more prominent – 

suggesting that loss and formation of these could be due to metamorphosis. 
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Table 5. Mean head capsule width (mm) of a laboratory strain C. riparius used in a 

developmental study. Mean head capsule width was calculated from the five larvae 

whose hemolymph was combined to make a representative Hb sample (Fig. 9). 

Lane 
Days after 

hatching 

Mean 

(mm) 

Range 

(mm) 
Instar 

1 6 0.205 0.2 to 0.21 Second 

2 9 0.3375 0.29 to 0.38 Third 

3 12 0.6133 0.58 to 0.64 Fourth 

4 15 0.5966 0.54 to 0.64 Fourth 

5 18 0.643 0.62 to 0.68 Fourth 

6 21 0.6475 0.62 to 0.68 Fourth 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 9 Changes in Hb protein throughout the life cycle of a laboratory population of 

riparius. Dotted box indicates 12.5 kDa band, which was found to be unique to 

riparius and observed to be continuously synthesized throughout the life cycle. Each lane 

presents one of three samples collected at the same time point. Lane 1: 2

3
rd

 instar, lanes 3, 4, 5, and 6: 4

(Table 5). Dotted black arrow indicates newly synthesized band. Black arrow indicates 

loss of the original 15.5 kDa band, which was present starting at 

adopted from Oh et al., 2014.  
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Changes in Hb protein throughout the life cycle of a laboratory population of 

. Dotted box indicates 12.5 kDa band, which was found to be unique to 

and observed to be continuously synthesized throughout the life cycle. Each lane 

presents one of three samples collected at the same time point. Lane 1: 2
nd

 instar, lane 2: 

instar, lanes 3, 4, 5, and 6: 4
th

 instar, lane 7: ladder, lane 8: pupa, and lane 9: adult 

). Dotted black arrow indicates newly synthesized band. Black arrow indicates 

loss of the original 15.5 kDa band, which was present starting at 4
th

 instar. The figure was 

adopted from Oh et al., 2014.     

 

Changes in Hb protein throughout the life cycle of a laboratory population of C. 

. Dotted box indicates 12.5 kDa band, which was found to be unique to C. 

and observed to be continuously synthesized throughout the life cycle. Each lane 

instar, lane 2: 

ne 9: adult 

). Dotted black arrow indicates newly synthesized band. Black arrow indicates 

The figure was 
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Atypical Hb protein profiles of wild C. riparius  

During several collections of wild chironomids, unusual Hb profiles were found 

for C. riparius (Fig. 10).  Even though these profiles had not occurred in the laboratory 

population, head capsule morphology identified these wild larvae as C. riparius, 

suggesting intra-species differences of Hb proteins in the wild chironomid populations. 

The most frequently found profile was P1 where at least 17 C. riparius showed this 

distinct profile. P3 was also found to be a popular profile among with n=12. However, P3 

had an unusual accumulation of lower bands (<4 kDa). P2 and P4 were considered rare 

profiles with n=4 and n=2, respectively. At first, these unusual profiles were disregarded, 

as they were initially thought to be degraded samples. However, as indicated by LC-MS 

data, every band tested was found to be a digested product of approximately 17 kDa sized 

Hb proteins family (Table 4). Therefore, it was theorized that the different Hb protein 

profiles seen in the wild population could be due to posttranslational modifications 

(PTMs) such as endogenous proteolysis. To better understand the possible relationship 

between Hb protein polymorphism and the activity of proteases, Hb proteins from the 

laboratory strain C. riparius were artificially digested with three different proteases: 

chymotrypsin, trypsin, and pepsin. 



 

 

Fig. 10 Common and rare patterns observed in wild 

lane represents Hb protein separated from hemolymph of one individual collected in KM, 

matched with its corresponding head capsule. Accumulation of degraded proteins was 

observed in P3 and P4. These rare profiles and accumulation

not seen in the laboratory strain 

n=2 
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Common and rare patterns observed in wild C. riparius Hb protein profiles. Each 

lane represents Hb protein separated from hemolymph of one individual collected in KM, 

matched with its corresponding head capsule. Accumulation of degraded proteins was 

observed in P3 and P4. These rare profiles and accumulation of low MW proteins were 

not seen in the laboratory strain C. riparius population. P1, n=17 P2, n=4 P3, n=12, P4, 

 

Hb protein profiles. Each 

lane represents Hb protein separated from hemolymph of one individual collected in KM, 

matched with its corresponding head capsule. Accumulation of degraded proteins was 

of low MW proteins were 

population. P1, n=17 P2, n=4 P3, n=12, P4, 
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Modulation of Hb protein profile of laboratory strain C. riparius by proteolysis  

To test the theory that the polymorphisms were due to natural proteolytic activity, 

Hb proteins collected from laboratory strain C. riparius were artificially digested with 

chymotrypsin, trypsin, and pepsin for 5, 30, and 60 minutes (Fig. 11). Three independent 

experiments were carried out for each protease. This test was necessary in order to 

determine whether or not Hb proteins when digested with proteases could generate 

similar profiles seen in the wild Chironomus species. Different time points represented 

the temporal effect of protease activity – the longer the incubation, the higher activity of 

protease.   

Digestion with 0.1 mg/mL of chymotrypsin generated two new bands just above 

the lower bands with molecular weights ranging approximately 5 to 9 kDa, and it 

eliminated a top band at 16 kDa (Fig. 11A). At 5 minutes of digestion, one of the doublet 

bands at 16 kDa began to disappear. Simultaneously, a new band was formed at 7 kDa, 

and there were increased intensities of both lower bands. This profile at 5 minutes 

indicated digestion of the top band yielding digested products ranging from 4 to 7 kDa. 

After 30 minutes of digestion, a strong band at 6 kDa was generated and one at 12.5 kDa 

began to disappear. By 60
 
minutes of digestion, the band at 12.5 kDa had all but 

disappeared while the rest of the profile was similar to that at 30 minutes. 

Digestion with 1.0 mg/mL of trypsin showed a pattern similar to that of 

chymotrypsin where the top band (lower doublet at 16 kDa) was the main target (Fig. 

11B). At 5 minutes of digestion, a band at 5 kDa had appeared. This band was also seen 

after 30 minutes of digestion by chymotrypsin. Trypsin completely digested the top band 
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by 30 minutes and some of the 12.5 kDa band. However, the band at 7 kDa generated by 

chymotrypsin was never seen with trypsin indicating different cleavage sites. At 60 

minutes, the 12.5 kDa band was completely digested while the rest of the profile was 

similar to that at 30 minutes. 

Pepsin digestion was completely different from chymotrypsin and trypsin (Fig. 

11C). At 5 minutes digestion with 1 mg/mL of pepsin, the profile was similar to that of 

control. However, an accumulation of digested products less than 4 kDa was observed. 

This finding indicated a wide range of cleavage sites of pepsin, targeting all Hb protein 

bands, unlike the others, in which the initial target was the top band at 16 kDa. The lower 

bands ceased to be visible after 30 minutes with more intense accumulation below 4 kDa. 

By 60 minutes of digestion, most of the upper bands except the 12.5 kDa band had 

disappeared, indicating a completely dissimilar mode of proteolytic activity exhibited by 

pepsin. 

The profiles generated by individual proteases or a combination of them appeared 

imitate profiles seen in the wild population. For example, accumulation of the proteins 

less than 4 kDa, a unique feature of pepsin, was observed most notably in P3 and P4 (Fig. 

10), suggesting a possible activity of pepsin-like protease(s) in P3 and P4 individuals. 

Another example is shown by the chymotrypsin digestion where Hb proteins digested 

with for 30 minutes (Fig. 11A) exhibited a profile similar to that of the P1observed in the 

wild C. riparius (Fig. 10). When these two profiles were aligned, bands were matched up 

with one another where several bands were evenly spaced out ranging from 4 to 14 kDa 

in both profiles. To some degree, trypsin digestion mimicked P4 where some of the top 
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bands, especially band at 12.5 kDa ceased to be visible. Overall, the polymorphisms 

observed in the wild chironomids could be due to either a specific protease or 

combination of various proteases with different target cleavage sites on Hb proteins. 

 

  



 

 

Fig. 11 Hb protein profiles of laboratory strain 

B) trypsin, and C) pepsin for 5, 30, and 60 minutes. Various banding patterns were 

observed in each protease digestion. Saturation of proteins <4 kDa observed in Hb 

proteins digested with pepsin. Profiles of Hb protein treat

to the control profile (data not shown).
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Hb protein profiles of laboratory strain C. riparius digested with A) chymotrypsin, 

B) trypsin, and C) pepsin for 5, 30, and 60 minutes. Various banding patterns were 

observed in each protease digestion. Saturation of proteins <4 kDa observed in Hb 

proteins digested with pepsin. Profiles of Hb protein treated with inhibitors were similar 

to the control profile (data not shown). 

 

digested with A) chymotrypsin, 

B) trypsin, and C) pepsin for 5, 30, and 60 minutes. Various banding patterns were 

observed in each protease digestion. Saturation of proteins <4 kDa observed in Hb 

ed with inhibitors were similar 
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Hb proteins response to Cd exposure 

Together with finding from LC-MS and digestion data, it was plausible to believe 

that the overall Hb protein synthesis involves translation of Hb proteins undergoing 

proteolysis to generate multiple bands. However, the actual mechanism regulating the Hb 

protein synthesis resulting in polymorphism was still in question. Some of the wild C. 

riparius showing Hb polymorphisms were collected at KM, which is moderately 

contaminated with a wide range of toxicants including heavy metals. Therefore, one 

theory was that the profiles observed in the wild C. riparius might have been caused by 

external stimuli. Among numerous candidates, Cd is one of the heavy metals frequently 

found at KM. Thus, to test the theory that the polymorphism could be a response to Cd, 

an acute Cd toxicity test was conducted using laboratory strain C. riparius larvae exposed 

to Cd at concentrations ranging from control, 0.3, and 3.0 µM for 96 hours.  

Three independent 96 hour acute Cd toxicity tests were conducted and the 

representative profiles of those tests are shown in Fig. 12. Changes in Hb protein profiles 

over 96 hours for both control and 0.3 µM Cd treatment groups were found to be similar 

in all three trials (Fig. 12AB). This indicated that 0.3 µM was the no observed adverse 

effect level (NOAEL) for Cd. Both control and 0.3 µM groups showed changes in Hb 

profiles beginning at 48 hour when there was addition of newly formed upper bands. 

These additional bands continued to progress throughout 96 hours. On the other hand, 3.0 

µM Cd group did not show any significant changes in the profiles over 96 hours of Cd 

exposure (Fig. 12C). The 3.0 µM Cd group maintained its 12 hour status-quo until 48 

hours, and then by 72 hours, the lower bands began to disappear in all three trials. This 
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loss of bands indicated that at 3.0 µM Cd, synthesis of the low MW weight bands was 

ceasing. More importantly, the profiles generated by the 3.0 µM Cd group did not mimic 

profiles found in the wild species (Figs. 1 – 8 and 10), suggesting that the profile 

generated by exposure to 3.0 µM Cd at 72 hours was a unique profile. Therefore, this 

unique profile could be used to detect presence of Cd at concentrations of at least 3.0 µM. 

Overall, it appeared that Cd at 3.0 µM reduced Hb protein synthesis and/or Hb 

degradation, as addition of bands was not visible by 48 hours, but rather, loss of the lower 

bands was observed.  

More subtle difference in Hb protein profiles was determined by measuring the 

pixels of the bands visualized on SDS-PAGE (Fig. 13). Data on trial 2 was not available 

as the SDS-PAGE broke apart when gels were dried. On gels from other trials, an area 

containing all bands ranging from 4 to 16 kDa was measured.  

In the absence of Cd, there was a statistical significant increase in band intensity 

at 72 hours and it continued to progress onto 96 hours (Fig. 13AB). This increase in band 

intensity was consistent with the addition of bands observed on SDS-PAGE by 72 hours. 

In the presence of 3.0 µM Cd, band intensity did not show any statistical changes 

throughout 48 hours; however, after 72 hours, there was a significant decrease in band 

intensity indicating a reduction in number of bands and pixels (Fig. 13CD). It appeared 

that the effect of Cd at the Hb protein level was not instantaneous, where the earliest 

significant effect was observed at 72 hours; consistent with the loss of lower bands 

observed on SDS-PAGE. The loss of band intensity coincided with mean body mass such 

that the 3.0 µM Cd treated group showed a considerable reduction in body mass 
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compared to control (Table 6). However, the loss of band intensity did not coincided with 

metamorphosis as the head capsule widths indicated that the larvae were in their 4
th

 instar 

(Table 6). Overall, Hb band number and pixel intensity increased overtime in the absence 

of Cd. Concentrations of 3.0 µM Cd had profiles similar to that of 12 hour control until 

48 hours, at which point some upper bands failed to appear. After 72 hours, Hb protein 

intensity was reduced and lower bands disappeared. This change in Hb profile was 

associated with poor growth but not metamorphosis. 



 

Fig. 12 Changes in Hb protein profiles over 96 hours. Panel A shows Hb prot

of the control, B shows 0.3 µ

µM Cd treated group. Control and 0.3 

was increase in number of bands beginning at 48 hours and progressed onto 96 hours. 

Profiles of 3.0 µM Cd treated group remained its 12 hour profile until 48 hour and at 72 

hour, the low MW proteins have disapp

each n consisted of three individual chironomids.
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Changes in Hb protein profiles over 96 hours. Panel A shows Hb prot

µM Cd treated groups and C shows Hb protein profiles of 3.0 

M Cd treated group. Control and 0.3 µM showed a similar response to Cd where there 

was increase in number of bands beginning at 48 hours and progressed onto 96 hours. 

M Cd treated group remained its 12 hour profile until 48 hour and at 72 

hour, the low MW proteins have disappeared. n=3 for each hour and concentration where 

each n consisted of three individual chironomids. 

Changes in Hb protein profiles over 96 hours. Panel A shows Hb protein profiles 

shows Hb protein profiles of 3.0 

M showed a similar response to Cd where there 

was increase in number of bands beginning at 48 hours and progressed onto 96 hours. 

M Cd treated group remained its 12 hour profile until 48 hour and at 72 

eared. n=3 for each hour and concentration where 



 

Fig. 13 Total Hb protein level was quantified by densitometry and converted to relative 

density by subtracting the background. The relative density of th

containing all the bands was normalized to signal of 12

depicted as mean ± standard deviation (n=3) where one n is representative of 3 

chironomids. Asterisks indicate significant differences between 

Cd treated groups. Statistically significances were established at p<0.05 for (*), p<0.01 

for (**) and p<0.001 for (***) determined by One

multiple comparison test. Data for trial II is not shown.
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Total Hb protein level was quantified by densitometry and converted to relative 

density by subtracting the background. The relative density of the whole region 

containing all the bands was normalized to signal of 12 hour 0 µM group. Values are 

standard deviation (n=3) where one n is representative of 3 

chironomids. Asterisks indicate significant differences between 12 hour 0 µM g

Cd treated groups. Statistically significances were established at p<0.05 for (*), p<0.01 

for (**) and p<0.001 for (***) determined by One-way ANOVA followed by Dunnett’s 

multiple comparison test. Data for trial II is not shown. 

 
Total Hb protein level was quantified by densitometry and converted to relative 

e whole region 

M group. Values are 

standard deviation (n=3) where one n is representative of 3 

M group and 

Cd treated groups. Statistically significances were established at p<0.05 for (*), p<0.01 

way ANOVA followed by Dunnett’s 
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Table 6. Chironomid body mass and head capsule width after 96 hours with or without 

Cd. Average body mass of one individual was measured in mg and its standard deviation 

is shown. Average head capsule width of one individual was measured in mm and its 

standard deviation is shown. For each concentration of Cd, n=30 for body mass, n=10 for 

head capsule width measurement. 

[Cd] Mean Body Mass (mg) Head Capsule Width (mm) 

Control 0.70 ± 0.073 0.68 ± 0.020 

0.3 µM 0.62 ± 0.114 0.68 ± 0.023 

3.0 µM 0.26 ± 0.056 0.63 ± 0.038 
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Effect of Cd on heme synthesis 

According to the 96 hour acute Cd toxicity test, it was clear that 3.0 µM Cd was a 

concentration high enough to suppress the overall Hb protein synthesis; delaying the 

progression of normal banding pattern and loss of the lower bands by 72 hours. To better 

understand the mode of action of Cd on Hb protein synthesis, we analyzed one of the 

early stages of heme synthesis (Fig. 14), the production of porphobilinogen (PBG) by 

PBG synthase activity. PBG synthase catalyzes condensation of two molecules of delta-

aminolevulinic acid (ALA) to form one molecule of PBG (Gultepe et al., 2009). The 

purpose of quantifying the amount of PBG present was to identify whether or not Cd had 

early influences on the multi-step process of heme synthesis pathway – potentially 

inhibiting the activity of PBG synthase causing decreased level of PBG production and 

ultimately affecting the final stage, production of heme molecule.   

Quantification of PBG synthase activity (PBG) was measured in three 

independent trials (Fig. 15). In the absence of Cd, it appeared that the activity of PBG 

over the course of 96 hours was relatively similar to that of the 12 hour control group in 

trial I (Fig. 15A). Although there was a slight decrease in PBG production at 48 hours, it 

recovered by 72 hours and maintained its level through 96 hours. In trial I with the 

presence of Cd, there was a significant decrease in PBG, except at 24 hours (Fig 15D). 

This indicated Cd toxicity on heme production. In trial II, the response in the absence of 

Cd was similar to that observed for trial I, accept this time PBG at 96 hours was 

significantly lower than control (Fig. 15B). However, when Cd was added, a substantial 

reduction in PBG was observed from 24 to 96 hours (Fig. 15E). Both trials I and II in the 
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presence of Cd correlated with SDS-PAGE, where there was no addition of new bands 

and a loss of lower bands.  In trial III, PBG was increased in the absence of Cd and 

showed a relatively similar PBG production in the presence of Cd (Fig. 15CD). The 

similar PBG production in the presence of Cd could be due to the fact that PBG 

production of the control group was low when compared to that of the controls in the 

other two trials. As high as two fold differences between the PBG production of trials II 

and III was observed, indicating that the activity of PBG synthase in trial III control was 

substantially low. Overall, it appeared that Cd did inhibit the activity of PBG synthase in 

the cytosol, possibly reducing the overall production of heme and thereby adversely 

affecting Hb protein synthesis. 

 

 

 

 

 

 

 

 

 

 

  



 

Fig. 14 Heme synthesis pathway. A pathway involving various enzymes catalyzing a 

heme molecule from glycine and succinyl

production. The level of porphobilinogen (highlighted in oval) was quantified as a 

measure of Cd toxicity.  
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Heme synthesis pathway. A pathway involving various enzymes catalyzing a 

heme molecule from glycine and succinyl-CoA, eventually leading to hemoglobin pr

production. The level of porphobilinogen (highlighted in oval) was quantified as a 

 

Heme synthesis pathway. A pathway involving various enzymes catalyzing a 

CoA, eventually leading to hemoglobin protein 

production. The level of porphobilinogen (highlighted in oval) was quantified as a 



 

Fig. 15 Quantification of PBG molecules.

measuring the amount of PBG generated over 96 hours in both presence (3.0 

absence of Cd. Panel A and B shows the changes in the PBG in trial I, C and D in trial II, 

and E and F in trial III. All treatment w

depicted as mean ± standard deviation (n=3) in each trial, where one n is representative of 

3 chironomids. Statistically significances were established at p<0.05 for (*), p<0.01 for 

(**) and p<0.001 for (***) determined by One

multiple comparison test. Data provided by Monsheimer, 2014
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Quantification of PBG molecules. Activity PBG synthase was analyzed by 

measuring the amount of PBG generated over 96 hours in both presence (3.0 

absence of Cd. Panel A and B shows the changes in the PBG in trial I, C and D in trial II, 

and E and F in trial III. All treatment was compared to 12 hour 0 µM group. Values are 

standard deviation (n=3) in each trial, where one n is representative of 

3 chironomids. Statistically significances were established at p<0.05 for (*), p<0.01 for 

0.001 for (***) determined by One-way ANOVA followed by Dunne

multiple comparison test. Data provided by Monsheimer, 2014 (personal communication)

 
Activity PBG synthase was analyzed by 

measuring the amount of PBG generated over 96 hours in both presence (3.0 µM Cd) and 

absence of Cd. Panel A and B shows the changes in the PBG in trial I, C and D in trial II, 

M group. Values are 

standard deviation (n=3) in each trial, where one n is representative of 

3 chironomids. Statistically significances were established at p<0.05 for (*), p<0.01 for 

way ANOVA followed by Dunnett’s 

(personal communication). 
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Effect of Cd on Hb IV and VII genes  

To further investigate the mode of action of Cd on Hb proteins, the expression of 

the genes which code for Hb proteins were analyzed using qPCR in three independent 

experiments. Among many candidates, Hb IV (monomer) and VII (dimer) genes were 

chosen, since their products were the most abundant proteins found in all of the bands 

tested by LC-MS (Table 4). Quantification of the expression of the two Hb genes was 

necessary to understand if there is a relationship between gene and its corresponding 

protein seen on SDS-PAGE.    

In the absence of Cd, the expression of Hb IV appeared to be up-regulated at 48 

hour (Fig. 16ABC). In trial I, the expression was significantly increased at 48 hour but it 

ceased by 72 hour returning to control levels (Fig. 16A). The expression of Hb IV in trial 

II also showed a significant increase, almost 6-fold differences when compared to that of 

the control (Fig. 16B). However, this up-regulation was maintained even after 96 hours 

reaching almost 10-fold differences by 72 hour. In trial III, the expression of Hb IV 

showed a significant increase at 48 hour and reaching 15-fold difference by 72 hour (Fig. 

16C). Although the expression came back down by 96 hour, it was still relatively higher 

than that of the control. Overall, in all three trials, it appeared that the up-regulation of Hb 

IV gene at 48 hour was necessary for addition of new bands observed on SDS-PAGE. 

This up-regulation was maintained at least until 72 hour indicating that the continued 

expression of Hb IV was necessary in order to generate additional bands after 48 hours 

which completed the fourth instar Hb profile. 
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In the presence of Cd, Cd toxicity was observed as soon as 12 hour, where all 

three trials showed a significant decrease in Hb IV expression (Fig. 16DEF). Trials I and 

II showed a significant down-regulation of Hb IV all throughout 96 hours (Fig. 16DE). 

However, in trial III, Cd exposure of this group showed a substantial recovery of Hb IV 

gene at 96 hour (Fig. 16F). Although this recovery was not significant when compared to 

that of the control (Bonferroni's Multiple Comparison Test), it was significantly different 

from other time points (data not shown). However, this unusual recovery could be due to 

the fact that the trial III group had a relatively high expression of Hb IV gene as there was 

no sign of recovery on SDS-PAGE. Overall, the down-regulation of Hb IV upon Cd 

exposure was correlated with SDS-PAGE where the addition of bands at 48 hour was not 

observed and that by 72 hour, there was loss of the lower bands. These results could be 

explained by Cd suppression of Hb IV gene resulting in decreased Hb IV production, as 

one of the major contributors to the lower band. 

The expression of Hb VII was similar to that of Hb IV where there was a 

significant increase at 48 hour in the absence of Cd in trials II and III (Fig. 17BC). 

Although there was no significant increase at 48 observed in trial I, the relative 

expression at 48 hour was the highest among other time points in trial I, consistent with 

the trend observed in other two trials (Fig. 17A). At 48 hour, there was an up-regulation 

of Hb VII gene up to 3.5 and 4.5-folds in trials II and III, respectively (Fig. 17BC). By 72 

hour, only trials I and III showed a similar downward trend where trial II still showed an 

up-regulation. The expression of Hb VII appeared to reach a similar level as the control 

except for trial II. Similar to findings observed in Hb IV, when Cd was absence, the up-
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regulation of expression of Hb VII gene at 48 hour correlated with Hb protein synthesis 

on SDS-PAGE at 48 hour, which showed the appearance of new bands. Overall, in all 

three trials, it appeared that the up-regulation of Hb VII gene at 48 hour was necessary 

for addition of new bands observed on SDS-PAGE for control. This up-regulation was 

maintained at least until 72 hour indicating that the continued expression of Hb VII was 

necessary in order to generate more bands after 48 hours to generate a complete fourth 

instar profile. 

When Cd was present, Hb VII also showed a rapid response where expression 

was significantly decreased as early as 12 hour (Fig. 17DEF). Similar to Hb IV, both 

trials I and II showed a sustained down-regulation (Fig. 17DE). However, as seen in trial 

III of Hb IV, an up-regulation of Hb VII was observed in trial III at 72 and 96 hour (Fig. 

17F). Again, this up-regulation in both 72 and 96 hours was not statistically significant 

when compared to that of the control; the induction at 96 hour was statically different 

(Bonferroni's Multiple Comparison Test) from other time points (data not shown). 

Likewise, this recovery was not seen on SDS-PAGE and possibly due to the fact that this 

group in trial III had a relatively high expression of Hb VII. Overall, changes in Hb genes 

due to Cd were shown to be rapidly effected where both Hb IV and VII genes were 

down-regulated as early as 12 hour. In addition, there was no sign of synthesis of new 

bands by 96 hours on SDS-PAGE, indicating an irreversible effect of Cd on Hb protein 

synthesis, reducing production of the precursor Hb proteins. 

  



 

Fig. 16 Changes in the Hb IV gene expression of chironomids treated with 0 and 3.0 

Cd throughout 96 hours was measured by qPCR.

calculate relative gene expression, and all data were normalized against 

housekeeping gene. Panels A and D represents 

B and E in trial II, and C and F in trial III. All treatments were compared 

group. Values are depicted as mean 

representative of 3 chironomids. Asterisks indicate significant differences between 

hour 0 µM group and other time points. Statistically significances were established at 

p<0.05 for (*), p<0.01 for (**) and p<

followed by Dunnett’s multiple comparison test. 
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es in the Hb IV gene expression of chironomids treated with 0 and 3.0 

was measured by qPCR. The ∆∆Ct method was chosen to 

calculate relative gene expression, and all data were normalized against β-actin, as a 

nels A and D represents the relative expression of Hb IV in trial I, 

B and E in trial II, and C and F in trial III. All treatments were compared to 12

group. Values are depicted as mean ± standard deviation (n=3) where one n is 

3 chironomids. Asterisks indicate significant differences between 

and other time points. Statistically significances were established at 

p<0.05 for (*), p<0.01 for (**) and p<0.001 for (***) determined by One-way ANOVA 

followed by Dunnett’s multiple comparison test.  

es in the Hb IV gene expression of chironomids treated with 0 and 3.0 µM 

Ct method was chosen to 

actin, as a 

expression of Hb IV in trial I, 

to 12 hour 0 µM 

standard deviation (n=3) where one n is 

3 chironomids. Asterisks indicate significant differences between 12 

and other time points. Statistically significances were established at 

way ANOVA 



 

Fig. 17 Changes in the Hb VII gene expression

Cd throughout 96 hours was measured by qPCR.

calculate relative gene expression, and all data were normalized against 

housekeeping gene. Panels A and D represents 

B and E in trial II, and C and F in trial III. A

group. Values are depicted as mean 

representative of 3 chironomids. Asterisks indicate significant differences between 

hour 0 µM group and other time points. Statistic

p<0.05 for (*), p<0.01 for (**) and p<0.001 for (***) determined by One

followed by Dunnett’s multiple comparison test. 
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Changes in the Hb VII gene expression of chironomids treated with 0 and 3.0 

was measured by qPCR. The ∆∆Ct method was chosen to 

calculate relative gene expression, and all data were normalized against β-actin, as a 

housekeeping gene. Panels A and D represents the relative expression of Hb VII in trial I, 

B and E in trial II, and C and F in trial III. All treatments were compared to 12 hour 0 

. Values are depicted as mean ± standard deviation (n=3) where one n is 

representative of 3 chironomids. Asterisks indicate significant differences between 

and other time points. Statistically significances were established at 

p<0.05 for (*), p<0.01 for (**) and p<0.001 for (***) determined by One-way ANOVA 

followed by Dunnett’s multiple comparison test.  

 

 
of chironomids treated with 0 and 3.0 µM 

Ct method was chosen to 

actin, as a 

expression of Hb VII in trial I, 

12 hour 0 µM 

standard deviation (n=3) where one n is 

representative of 3 chironomids. Asterisks indicate significant differences between 12 

ally significances were established at 

way ANOVA 
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Effect of Cd on Ub gene 

To further investigate the effect of Cd on Hb proteins, changes in Ub expression 

was analyzed by qPCR in order to determine whether or not Ub played a role in 

posttranslational modification of the Hb proteins – more specifically the effect of Cd on 

digestion of Hb proteins. The Ub gene had not been sequenced for C. riparius. Therefore, 

a fragment of Ub’s nucleotide sequence was needed for making gene specific primers. 

Generating gene specific primers of Ub involved alignment of known ubiquitin 

sequences of other species made available in NCBI. From the alignment, degenerative 

primers based on the consensus sequence were found. Standard PCR amplification with 

these degenerative primer sets provided several potential gene products detected as bands 

on ethidium bromide stained agarose gels. The most intense band was excised, and the 

DNA from that band was purified as a template for molecular cloning. The sequence 

information from that particular band is shown in Fig. 18A as the query sequence. Since 

there was no genomic nucleotide sequence information available for chironomid Ub, one 

of the most closely related species, Aedes aegypti, was chosen as a subject match. The 

alignment showed 86% identity confirming that the cloned band was a partial sequence 

of Ub. From the initially acquired sequence, a gene specific primer set was generated 

containing a forward primer of 5’ATCAGACAATGTACGACCATCTT3’and a reverse 

primer of 5’ACATAGGAAGTTGAGCCATCAG3’. This primer set amplified a 135 

base-pair partial region of Ub in C. riparius and was used to amplify partial coding 

sequence of ubiquitin (Fig. 18B) 
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In the absence of Cd, there were no significant changes in the expression Ub in all 

three trials, indicating the expression Ub was not time-dependent as both Hb genes were 

found to be (Fig. 19). Although there was a slight reduction in expression of Ub gene at 

24 hour and 72 hour in trial I and II, respectively, the overall expression was not 

significantly different from that of the control indicating a relatively stable cellular 

activities involving degradation of damaged proteins (Fig. 19 AB). 

However, in the presence of Cd, other than trial I, both trials II and III showed a 

significant increase at 24 hour, suggesting a relatively early ubiquitin labelling or 

ubiquitination of damaged proteins, potentially caused by Cd (Fig. 17EF). However, the 

up-regulation was short in trial II. Only in trial III was the expression of Ub prolonged 

until 72 hour after which it returned to control levels. The prolonged expression Ub in 

trial III suggested that there could be more damaged proteins caused by Cd than in the 

other two trials. In general, Cd did appear to cause a change in the Ub expression, 

suggesting a surge of ubiquitin protein at early time points. Together suppression of Hb 

proteins production and Ub marking damaged Hb proteins for degradation could explain 

the lack of new upper appearance and loss of the lower bands in Cd presence. 

 

 

 

 

 

  



 

Fig. 18 Cloned and sequenced nucleotide information of ubiquitin (Ub) gene

riparius. Since ubiquitin gene of 

(cloned) was matched up with the subject sequence of one of the closely related species, 

Aedes aegypti (annotated gene sequence available in NCBI, accession number: 

XM_001664217) with 86% identity, confirming ub

Primer set containing forward primer 5’ATCAGACAATGTACGACCATCTT3’ 

(indicated by the black box) and reverse primer 5’ACATAGGAAGTTGAGCCATCAG3’ 

(indicated by the dotted box) was generated in order 

base-pairs) of Ub using PCR (Panel B).
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Cloned and sequenced nucleotide information of ubiquitin (Ub) gene

. Since ubiquitin gene of C. riparius is currently unavailable, the query sequence 

(cloned) was matched up with the subject sequence of one of the closely related species, 

(annotated gene sequence available in NCBI, accession number: 

XM_001664217) with 86% identity, confirming ubiquitin gene of C. riparius 

Primer set containing forward primer 5’ATCAGACAATGTACGACCATCTT3’ 

(indicated by the black box) and reverse primer 5’ACATAGGAAGTTGAGCCATCAG3’ 

(indicated by the dotted box) was generated in order to amplify a partial region (135

PCR (Panel B). 

 
Cloned and sequenced nucleotide information of ubiquitin (Ub) gene found in C. 

is currently unavailable, the query sequence 

(cloned) was matched up with the subject sequence of one of the closely related species, 

(annotated gene sequence available in NCBI, accession number: 

C. riparius (Panel A). 

Primer set containing forward primer 5’ATCAGACAATGTACGACCATCTT3’ 

(indicated by the black box) and reverse primer 5’ACATAGGAAGTTGAGCCATCAG3’ 

ion (135 



 

Fig. 19 Changes in the Ub gene expression

throughout 96 hours was measured by qPCR. 

relative gene expression, and all data were normalized against 

gene. Panels A and D represents 

and C and F in trial III. All treatments were 

as mean ± standard deviation (n=3) where one n is representative of 3 chironomids. 

Asterisks indicate significant differences between 

points. Statistically significances were established at p<0.05 for (*), p<0.01 for (**) and 

p<0.001 for (***) determined by One

comparison test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

- 69 - 

Changes in the Ub gene expression of chironomids treated with 0 and 3.0 

was measured by qPCR. The ∆∆Ct method was chosen to calculate 

relative gene expression, and all data were normalized against β-actin, as a housekeeping 

gene. Panels A and D represents the relative expression of Ub in trial I, B and E in trial II, 

reatments were to 12 hour 0 µM group. Values are depicted 

standard deviation (n=3) where one n is representative of 3 chironomids. 

Asterisks indicate significant differences between 12 hour 0 µM group and other time 

ances were established at p<0.05 for (*), p<0.01 for (**) and 

p<0.001 for (***) determined by One-way ANOVA followed by Dunnett’s multiple 

 

of chironomids treated with 0 and 3.0 µM Cd 

Ct method was chosen to calculate 

actin, as a housekeeping 

expression of Ub in trial I, B and E in trial II, 

M group. Values are depicted 

standard deviation (n=3) where one n is representative of 3 chironomids. 

and other time 

ances were established at p<0.05 for (*), p<0.01 for (**) and 

way ANOVA followed by Dunnett’s multiple 
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Markers of Cd toxicity: MT  

Cd is known to induce generation of reactive oxygen species (ROS), including the 

superoxide radical, hydroxyl radical, and hydrogen peroxide causing cellular damages 

such as lipid peroxidation, protein denaturation, and DNA damage. As a protective 

mechanism, metal binding proteins, such as metallothionein (MT), are the first responder 

for detoxification and cysteine metabolism of heavy metals (Fang et al., 2010; Jeppe et al., 

2014). Therefore, changes in the normal expression of MT could be used as an indication 

of presence of Cd. Results showed that MT was over-expressed even in the absence of Cd 

(Fig. 20 BC). Other than trial I, both trials II and III showed a significant increase in MT 

expression, suggesting that MT is as highly expressed as Hb genes in chironomids. In 

trial I, there was no statistical difference in expression from 12 to 96 hours. In trials II 

and III, an upward trend of MT expression was observed.  

In the presence of Cd, the results varied among trials (Fig. 20DEF). The 

expression of MT in trial I had no statistical changes, although it had a downward trend 

suggesting suppression by Cd (Fig. 20D). In trial II, there was a significant increase at 24 

hour; however, this induction soon came down to a level similar to that of the control 

(Fig. 20E). Interestingly, the expression of MT was up-regulated at 72 hour and 

maintained throughout 96 hours in trial III (Fig. 20F). There was not a single consistent 

trend among the three trials, indicating chironomids must have other means of Cd 

detoxification. Overall, the expression of MT appeared to be inconsistent and did not 

contribute to the changes in the Hb protein profiles observed on SDS-PAGE. 

 



 

Fig. 20 Changes in the MT gene expression

throughout 96 hours was measured by qPCR.

relative gene expression, and all data were normalized against 

gene. Panels A and D represents 

II, and C and F in trial III. All treatments were

depicted as mean ± standard deviation (n=3) where one n is representative of 3 

chironomids. Asterisks indicate significant differences between 

other time points. Statistically significances were es

(**) and p<0.001 for (***) determined by One

multiple comparison test.  
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Changes in the MT gene expression of chironomids treated with 0 and 3.0 

was measured by qPCR. The ∆∆Ct method was chosen 

relative gene expression, and all data were normalized against β-actin, as a housekeeping 

gene. Panels A and D represents the relative expression of MT in trial I, B and E in trial 

II, and C and F in trial III. All treatments were compared to 12h 0 µM group. Values are 

standard deviation (n=3) where one n is representative of 3 

chironomids. Asterisks indicate significant differences between 12h 0 µM group 

other time points. Statistically significances were established at p<0.05 for (*), p<0.01 for 

(**) and p<0.001 for (***) determined by One-way ANOVA followed by Dunnett’s 

of chironomids treated with 0 and 3.0 µM Cd 

Ct method was chosen to calculate 

actin, as a housekeeping 

expression of MT in trial I, B and E in trial 

M group. Values are 

standard deviation (n=3) where one n is representative of 3 

M group and 

tablished at p<0.05 for (*), p<0.01 for 

way ANOVA followed by Dunnett’s 
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Discussion 

With a dependable biomarker, evaluating the environmental health of a particular 

area by deducing the actual cause of the change in the environment becomes possible. 

Species identification is the first step in evaluating the quality and it becomes even more 

crucial when changes in communities are used to study biodiversity and to biomonitor 

species-level responses to anthropogenic stressors. Chironomids are important members 

of the BMI community and an easier method for their identification would facilitate their 

use in field studies. The approach of this study was to compare a new technique of 

identification, SDS-PAGE of Hb proteins, with a well-established one, larval head 

capsule morphology. Identification of chironomids using SDS-PAGE was validated by 

showing that a unique combination of Hb protein profiles was associated with just one 

head capsule morphology and by proving LC-MS that the bands from SDS-PAGE gels 

were actually composed of a group of a wide range of digested Hb proteins, Hb VII being 

the major contributor. The use of Hb protein polymorphism visualized on SDS-PAGE 

enhanced the ability to distinguish one individual from the other. For example, the 

consistent presence of particular band(s) for each species studied indicated that Hb 

protein profiles could be used to study taxonomic relationships. Nonetheless, the artificial 

digestion of Hb proteins coupled with LC-MS data indicated that the major Hb proteins 

undergo natural proteolysis – generating unique Hb protein profiles which accounted for 

polymorphism. Depending on the type and rate at which protease act on its substrate, 

heterogeneous profiles were observed in the wild population and that these profiles were 

not generated upon exposure to one toxicant per se, but possibly due to a myriad of 
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environmental cues. However, detection of Cd could be done in the laboratory setting; 

separating Hb proteins collected from chironomids by SDS-PAGE. The exposed 

chironomids showed a distinctive modulation in their Hb protein profiles, which were not 

seen in the wild species. Both heme and hemoglobin synthesis were significantly 

suppressed by Cd toxicity, where the activity of PBG synthase was inhibited and the two 

major Hb protein genes IV and VII, were also down-regulated. Ubiquitin also appeared to 

be responding to Cd where its expression was up-regulated upon Cd exposure; together 

with the suppression of the overall hemoglobin synthesis including PBG synthase 

inhibition, a unique profile showing early 4
th

 instar bands along with the loss of the lower 

bands was generated. Thus, this particular profile generated upon exposure to 3.0 µM Cd 

could be an indicator of Cd toxicity. However, utilizing this technique for Cd detection 

required an additional tool, head capsule width measurement; to further validate the 

developmental stage of the chironomids being tested. This extra step was required in 

order to avoid any confusion which could arise when comparing Hb protein profiles of an 

early instar, i.e. 3
rd

 instar chironomid versus 4
th

 instar chironomid exposed to Cd.   

In this study, Hb protein profiles enhanced the ability to identify chironomid 

species. For example, individuals of Cricotopus bicinctus, Thienemannimyia group sp. 

and Dicrotendipes modestus showed distinctive Hb profiles with no variation. However, 

Cricotopus bicinctus and Thienemannimyia group sp. were only found at one site, RR, 

and only two to three individuals of each species were analyzed. Studying more 

individuals from more locations may increase the number of Hb profiles for these two 

species. On the other hand, D. modestus found at three different locations had three 
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distinct bands – making a consistent, unique profile that was not found in any other 

species. 

Two genera, Chironomus and Glyptotendipes, had more than one Hb profile 

associated with each head capsule. This complicated the use of their profiles for species 

identification. C. riparius and both species of Glyptotendipes were found in KM. Due to 

shared bands, a unique profile for each genus was not found; although, they did have 

characteristic bands such as 12.5 kDa in C. riparius (Fig. 1 P1 – P3) and 17 and 13 kDa 

in both Glyptotendipes species (Fig. 5 P7 – P8 and Fig. 6 P9 – P11). Since chironomids 

have been shown to secrete stage-specific hemoglobins (Vafopoulou-Mandalos & Laufer 

1982; Vafopoulou-Mandalos & Laufer 1984), a developmental study was undertaken to 

determine if one or more of the Hb bands in the different profiles could be used to 

consistently identify the species (Fig. 9). The study was performed using a laboratory 

population of C. riparius. Results showed one consistent band at 12.5 kDa that was first 

observed at second instar and continued to be observed throughout the whole life cycle. 

This indicated that despite differences in stage-specific profiles the presence of this band 

could be used to identify C. riparius. This was supported by the absence of this band in 

the unknown Chironomus species (Fig. 2) as well as the rest of the other wild 

chironomids collected (Fig. 8). 

Results from the developmental study appeared to account for the variable 

profiles seen in wild C. riparius (Fig. 1 P1 – 3). The Hb protein profile for P3 was 

missing the 15.5 kDa band which was found in both P1 and P2, indicating that the P3 

individual might have been transitioning between the third and fourth instar (compare 
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lanes 3 and 4 in Fig. 9). This finding suggested that while head capsule width could be 

used to identify larval instars, Hb protein profile might be another tool once it is fully 

characterized for a particular species. Findings also indicated that it would be beneficial 

to analyze multiple instars of a particular species to determine which band or 

combination of bands are consistently present and therefore representative of the species. 

Interestingly, some Hb protein profiles were found to be rare and unable to 

explain the extreme cases of polymorphism observed (Fig. 10). These profiles were 

initially believed to be Hb protein profiles from degraded samples, as the findings from 

the developmental study could not explain the mechanism behind these unusual profiles. 

However, the results of LC-MS analysis showed that proteins found in the band with 

molecular weight of 12.5 kDa were partial products or fragments of mainly Hb genes VII 

and II (Table 4). This finding indicated that there is a presence of endogenous proteases 

which are responsible for generating a unique individual profile for each species. Since 

the full length protein products of these Hb genes have a molecular weight of 

approximately 17 kDa, the Hb proteins in the band at 12.5 kDa and others must have 

been altered so as to reduce their molecular weights. Research has shown that proteins 

are degraded by a number of natural processes (Jensen, 2004; Mann & Jensen, 2003). It 

appeared that upon Hb protein translation; it is in the inactive state, where it requires 

further processing to become active. A previous study has shown that Hb IV gene is an 

intron-less globin gene and has characteristics of secretory proteins – a region coding for 

an amino-terminal signal peptide also containing start codon (Antoine & Niessing, 1984). 

Interestingly, the amino acid sequence of mature Hb IV starts 14 codons after the start 
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codon, 13 of which are hydrophobic, indicating a signal sequence. It appeared that the 

hydrophobic leader peptide is probably responsible for the vectorial transport of Hb IV 

across the endoplasmatic reticulum. This is consistent with earlier studies suggesting Hb 

proteins are synthesized as preglobins in the larval fat body and subsequently secreted 

into the hemolymph as free molecules (Antoine & Niessing, 1984). Therefore, the 

appearance of digested products of major Hb proteins in across all bands tested including 

both high and low molecular weight, could be explained by the fact that Hb proteins 

could be undergoing proteolysis at least in the hydrophobic leader sequence reducing its 

actual molecular weight.  

Fig. 11 shows C. riparius Hb proteins artificially digested by three different 

proteases – chymotrypsin, trypsin, and pepsin. This generated profiles that were different 

from the untreated Hb proteins. Although generating the exact profiles seen in the wild 

population was not possible, the types and rates of protease activities acting upon Hb 

protein could have played a critical role in producing profiles similar to those seen in the 

wild population. Chymotrypin digestion appeared to be responsible for making bands 

between 5 to 10 kDa (Fig. 11); its profile looked to be similar to that of one of the 

common profiles seen in wild C. riparius (Fig. 10 P1). Trypsin digestion at 60 minutes 

(Fig. 11) generated a profile similar to that of the one of the rare profiles seen in the wild 

C. riparius (Fig. 10 P4). An interesting digestion pattern was shown by pepsin where 

accumulation of the low molecular weight proteins was observed below 4 kDa (Fig. 11). 

This type of digestion correlated with the profiles of the wild species where P3 and P4 in 

Fig. 10 also showed an intense accumulation below 4 kDa. Evidence of digestion of Hb 
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proteins was shown in C. pallidivitatus, where Schin et al., (1974) suggested an existence 

of a degradative mechanism controlling the concentration of hemoglobin, and was 

measured by quantifying formation of bile pigment. These pigments were found in 

considerable quantity within the meconium at the time of adult emergence. Secretion of 

serine peptidases including chymotrypsin and trypsin has been implicated in variety of 

cellular regulations including immune response by Anopheles sp. and hydrolysis of 

nutrients from food by Aedes aegypti. Despite the high similarity of serine peptidases 

among mosquito species, each enzyme has a unique set of accessory catalytic residues 

that are thought to be important for determining substrate specificity (Saboia-Vahia et al., 

2013). However, the activity of these peptidases could be influenced by environmental 

stressors such as di-(2-ethylhexyl)-phthalate (DEHP) exposure (Park & Kwak, 2008). 

Taken together, in the wild, individual and/or a combination of proteases and their 

activity governed by varieties of external cues could be responsible for generating 

profiles seen in the wild species, suggesting differences in both individual and population 

levels of Hb proteins digestion. 

Many studies have shown that environmental stress can influence chironomids at 

both the molecular and cellular level (Ha & Choi 2008; Lee et al. 2006; Nair et al. 2011). 

Findings in this study suggested that water chemistry might have contributed to 

hemoglobin polymorphism detected by multiple Hb protein profiles for some species. For 

example, two major differences between C. riparius at RR and KM were the absence of 

the 8.5 kDa band in RR chironomids as well as the presence of bands below 7 kDa in KM 

chironomids. These differences might be attributed to salinity given that RR is freshwater 
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while KM is oligohaline. This idea was supported by the presence of bands below 7 kDa 

in C. ME1, which was collected at another oligohaline site. The modifications in Hb 

protein seen at oligohaline sites might reflect a role in salt tolerance. Research has 

suggested that C. salinarius uses their hemolymph for osmotic regulation (Cartier et al. 

2011). C. salinarius appeared to absorb and eliminate excess salt using their Hb proteins 

or were able to adjust their intracellular Hb protein levels according to the external 

environment. Interestingly, the three polymorphic species found in this study – 

Chironomus, Glyptotendipes and Dicrotendipes – were all found at oligohaline sites. In 

addition, the two taxa that showed a lack of polymorphism, Cricotopus bicinctus and 

Thienemannimyia group sp., were found only at freshwater sites. This limited evidence 

suggested that polymorphism in Hb proteins may be an important feature of chironomid 

adaptation to environmental parameters. 

Due to a high concentration of Cd found in KM, it was first assumed that Cd 

could be influencing the endogenous proteases activity – causing polymorphisms within 

the same species. However, 96 hour acute Cd toxicity tests showed that on SDS-PAGE, 

Hb protein profiles of 3.0 µM Cd exposed group were not only unique and different from 

the control Hb protein profile, but also the profile was not similar to those found in the 

wild species (Fig. 12). In the absence of Cd, there was an increase in number of bands in 

a profile and addition of bands was observed up to 96 hours indicating a surge of natural 

Hb protein synthesis. This increase in Hb protein production was consistent with a 

previous study where Hb concentrations were at maximum during the late fourth instar 

(Schin et al., 1974). In the presence of Cd, early onset of 4
th

 instar Hb protein profile was 
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maintained until 48 hours, an additional 24 hour delay, when compared to that of the 

control group. There was a loss of lower bands by 72 hours, indicating repression of 

natural Hb protein synthesis and perhaps, digestion of those major Hb proteins. When 

profiles were compared with the head capsule width and overall body mass, Cd toxicity 

clearly caused considerable inhibition on larvae growth. In previous study, growth of C. 

tentans larvae exposed to uranium was shown to be decreased. However, larvae were 

able to recover their growth similar to that of the control level, once transferred to clean 

water (Muscatello & Liber, 2010). This recovery observed in larvae of C. tentans could 

suggest that larvae exposed to Cd in our study could potentially reallocated energy into 

Cd detoxification, thereby inhibiting growth. Both active and passive transport 

mechanisms have been proposed to explain the uptake of metal from solution into aquatic 

invertebrates. The active transport required the expenditure of energy and can be protein 

carrier-mediated (e.g., copper, zinc), via ion pump (e.g., cadmium, calcium), and/or by 

endocytosis (e.g., iron, lead) (Muscatello & Liber, 2010). Evidence of entry of Cd into C. 

riparius was shown by Leonard et al., (2009) where Cd was transported into anterior 

midgut and out into the hemolymph where it was excreted through Malpighian tubules. 

However, Cd did not affect the metamorphosis as the larvae exposed to 3.0 µM Cd were 

considered to be in 4
th

 instar indicating that metamorphosis could be a separate 

mechanism, which might not be influenced by Cd detoxification. SDS-PAGE data 

indicated that Cd alone was not a factor in generating profiles seen in wild species or 

artificial protease digestions, but Cd toxicity did generate a unique profile which could be 

used as a biomarker to identify adverse effects of Cd. It is important to note that 3.0 µM 
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Cd was not an environmentally-relevant concentration, meaning that wild species are 

experiencing lower concentration but for longer duration. It is well documented that 

chironomids of the early stages of larva (2
nd

 instar) showed approximately 8 fold higher 

sensitivity (24 hour LC50) towards Cd than that of the 4
th

 instar (Williams et al. 1986). 

Therefore, a chronic low concentration Cd toxicity test would be required to  verify 

whether or not modulation of bands by high Cd concentrations could also be seen in low 

Cd concentration chronic (a full life cycle) exposures. The result from this future test 

would validate the use of Hb protein profiles as a biomarker for Cd exposure.    

Cd toxicity was prevalent at the heme synthesis level where the changes in Hb 

proteins observed on SDS-PAGE were consistent with Cd’s toxic effect on PBG synthase 

activity. Upon exposure to 3.0 µM Cd, the level of PBG appeared to be decreased, 

indicating suppression of PBG synthase activity (Fig. 15). The activity of PBG synthase 

was decreased as early as 12 hours, indicating a susceptibility to Cd. However, a 

mechanism illustrating Cd toxicity on heme synthesis was unclear and appeared to be 

similar to other well documented metal toxicity such as lead (Pb). Pb has been shown to 

inhibit hemoglobin production by interfering with PBG synthase and ferrochelatase 

activity, the latter catalyzes the insertion of iron into protoporphyrin IX (Scinicariello et 

al., 2007). Pb appeared to displace the necessary metal cofactor for PBG synthase, Zn, 

which then inhibited heme synthesis. Pb had a high affinity for sulfhydryl (SH) groups, 

binding to SH group of PBG synthase and inhibiting its activity (Hodgson, 2004). 

However, detoxification of Cd has been known to involve formation of complexes with 

high cysteine proteins such as metallothionein (see below) and induction of antioxidant 
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enzymes such as families of superoxide dismutases and glutathione due Cd generation of 

reactive oxygen species (ROS) (Hensbergen et al., 2001, Fang et al., 2010, Liu et al., 

2009, Park et al., 2012). Therefore, whether Cd has a direct influence on PBG synthase or 

indirect one, for example, on ROS generation and genotoxicity, how Cd might have 

produced the unique Hb profile seen during 3.0 µM exposure should be further 

investigated in order to understand its mechanism of action. 

Suppression of Hb genes IV and VII expressions was observed as early as 12 

hours in the presence of Cd (Figs. 16 and 17). As major Hb proteins, their early response 

indicated that these Hb genes were highly susceptible to Cd toxicity, where the responses 

manifested were immediate and consistent with the changes shown in the SDS-PAGE. 

Significantly decreased expressions of these selected Hb genes suggested that there was a 

clear link between the Hb gene expression and the Hb protein synthesis shown on SDS-

PAGE. The adverse effect of Cd on Hb genes observed in this study was validated by 

another study; where Cd was shown to down-regulated 12 hemolymph proteins (Choi & 

Ha, 2009). The up-regulation of the Hb genes matched up with the addition of bands at 

48 hour and continued until 96 hour. It appeared that the profile displayed by 72 hour in 

the absence of Cd represents a profile of fully mature larvae, and in order to fully mature 

as 4
th

 instar larvae, the 48 hour induction of genes of the major Hb proteins is necessary. 

Similarly, without the continuous expressions of the major Hb proteins, the larvae would 

maintain their early 4
th

 instar profile along with loss of the lower bands, indicating no 

further Hb proteins to be digested. Although there appeared to be no direct relationship, it 

seemed that the down-regulation of Hb protein genes in response to Cd could be 
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indirectly generating ROS through unbound heme, or free heme. When free heme is not a 

component of hemoproteins, due to its lipophilicity, it has been found toxic to cells; 

promoting lipid peroxidation and production of ROS, resulting in membrane injury and 

cell apoptosis (Khan & Quigley, 2011). In addition, oxygen radicals were shown to 

stimulate ubiquitin-dependent degradation of newly synthesized proteins (Medicherla & 

Goldberg, 2008). Thus, the polymorphism observed in response to Cd could due to: 1) 

the proteins that make up the early 4
th

 instar profile are insensitive to oxidative stress and 

do not undergo degradation, 2) newly synthesized Hb proteins are sensitive and rapidly 

undergo degradation process, unable to generate lower bands.          

To further investigate the effect of Cd on Hb proteins, changes in Ub expression 

was analyzed by qPCR in order to determine whether or not Ub played a role in PTM of 

the Hb proteins – more specifically the effect of Cd on digestion of Hb proteins. The 

theory was that Cd could be accelerating the rate of digestion, as Cd could be binding to 

Hb proteins replacing Fe
2+

. Leonard et al., 2009 showed that Cd is transported into the 

anterior midgut cells from the lumen and out of the cells into the hemolymph. Since the 

production of Hb protein is in the fat body (Bergtrom et al. 1976), it was likely that Cd 

could alter proper folding of Hb protein by binding to it, since fat body is located in close 

proximity to the midgut and Cd could enter the fat body. Thus, Ub was chosen to be 

studied since its function is related to process degradation of the damaged proteins. 

Ub is a 76-residue protein found in nearly every eukaryote. Its DNA sequence is 

also highly conserved. Ub is involved in a complex process known as the ubiquitin-

proteasome pathway, where it functions as marking damaged proteins for proteolytic 
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degradation (Krauss, 2008). It is possible that low concentrations of toxicants abnormally 

stimulate ubiquitinating enzymes resulting in increased degradation of target proteins 

such as Hb. Over stimulation of ubiquitinating enzymes might be linked to the unique Hb 

profile observed in Cd exposed larvae. The abnormal lack in upper band development 

and loss of lower bands caused by Cd could be due to Ub posttranslational modification. 

More specifically, Ub might have initiated marking of damaged Hb proteins for protein 

turnover. Through series of enzymatic processes involving other Ub-related proteins, the 

marked proteins were then delivered to proteasomes where actual degradation of the 

marked proteins occurred. Cd has been known for its competition with transport with 

calcium (Leonard et al., 2009). Therefore, as a non-essential metal, Cd is believed to 

cause damages and/or generate mis-folded proteins. The idea was that if Cd alters the Hb 

conformation by binding to it or damages it in anyway, the Hb proteins would be 

subjected to Ub for degradation.  

Ubiquitin appeared to be responding to Cd where there was an induction of the 

expression as early as 24 hours (Fig. 18). This induction of Ub suggested a potential 

activation of a biological process known as the ubiquitin-proteasome pathway, where Ub 

functions as marking damaged proteins for proteolytic degradation. The idea is that once 

Cd was transported through the midgut and entered the hemolymph, it bound to heme or 

globin molecules. A recent proteomic study showed that 14 proteins disappeared and six 

proteins seemed to be newly expressed upon exposure to Cd in larvae of C. riparius (Lee 

et al., 2006). Of the six proteins, one of them was ubiquitin-actin fusion protein. This 

mechanism is consistent with the observed induction of Ub at 24 hour. However, 
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ubiquitin-proteasome system is known to have complex regulation involving numerous 

enzymes for each step; activation, conjugation, and ligation of ubiquitin molecule. In 

addition, there are deubiquitylating enzymes (DUBs) counteracting the ubiquitylation of 

a particular protein (Petroski, 2008). Therefore, deducing the actual relationship between 

Cd exposure and ubiquitin requires further investigation.   

The response of MT to Cd was not what was expected (Fig. 20). In the absence of 

Cd, it appeared that a high expression of MT was necessary for growth and maturation 

over 96 hours as observed in control over. However, there was an inconsistent response 

of MT in the presence of Cd. The response of MT in the presence of Cd found in this 

study was not consistent with others. The expression of MT mRNA was induced 

significantly in C. riparius after exposure to three different concentrations of Cd (Park & 

Kwak, 2012). However, the highest Cd concentration used in that study was 20 µg/L, 

which is equivalent to 0.1 µM, 30 time less than 3.0 µM used in our study. It appeared 

that MT responds to low concentration of Cd but not high concentrations. The 

inconsistency in MT response in our study suggested that at high concentration, 

chironomids are relying on other means of detoxification of Cd. One possibility was the 

sequestration of Cd within the gut (Leonard et al, 2009). However, in order to test 

whether chironomids were selecting detoxification routes through midgut, quantification 

of Cd within the meconium of larvae at 96 hour is necessary to ensure that Cd has been 

cleared from hemolymph. 

This study contributes to the development of a novel means of identification of 

wild chironomid species using Hb protein profiles detected by SDS-PAGE. The 
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technique described here supports and supplements the current standard method of 

taxonomic identification using larval head capsule morphology or even other methods 

such as PCR-based approaches described above. Identification using Hb profiles requires 

less taxonomic expertise, could be used to identify larvae with deformed head capsules, 

and most importantly, could handle large numbers of samples. The consistent presence of 

particular bands for each species studied indicated that Hb profiles could be used to study 

taxonomic relationships and determine instars in chironomids. The regulation of overall 

Hb protein synthesis responsible for the polymorphisms observed in wild and laboratory 

species is likely a complex biological activity involving numerous enzymes, which could 

be influenced by a wide range of unknown external cues. This study provided a glimpse 

of how Hb protein synthesis functions normally. It involved synthesis of different sized 

bands which appeared during 4
th

 star. Experiments showed that the appearance of bands 

could be impacted by an environmental stressor such as Cd. However, the profile 

produced did not explain the polymorphisms found in wild populations of C. riparius. 

Profiles were explained by protease digestion. Overall, this study adds proteolysis as a 

novel constituent of Hb protein as a biomarker, that should now be considered as a useful 

tool in biomonitoring of the environmental quality  
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