5-1-2015

Reliability Polynomials of Chorded Cycle Graphs

Dana Loughrey

Follow this and additional works at: https://scholarship.shu.edu/petersheim-exposition
Abstract:

We denote by $C_{c_{1},c_{2}}^{c}$ the graphs comprised of a cycle on c nodes having a single chord, with c_{1} and c_{2} cycle nodes on either side of the chord. When a graph is used to model a network, the All-Terminal Reliability (Rel) is the probability of network communication among all stations when the stations are perfectly reliable and the links fail with equal but independent probability. Thus, $Rel(G, p) = \sum_{i=0}^{\left|E(G)\right|} N_{i} p^{i} (1 - p)^{\left|E(G)\right|-i}$, where $E(G)$ is the total number of edges, p is the probability of edge operation, and N_{i} is the number of spanning connected subgraphs of size i. We present formulas for the Rel for all chorded cycle graphs having finite c, and prove that the uniformly most reliable such graph is the one in which $c_{1} = c_{2}$ when c is even, and in which c_{1} and c_{2} differ by one when c is odd.