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Abstract 

Prolonged exposure to morphine down-regulates mu opioid receptors (MOR) on both 

undifferentiated and differentiated (retinoic acid or phorbol ester treated) SHSY-5Y cells. 

However, morphine pretreatment does not alter MOR receptor affinity for morphine. To 

investigate the molecular basis for MOR regulation after exposure to its selective 

agonists, we have developed a quantitative competitive reverse transcriptase-polymerase 

chain reaction (QC-RT PCR) to quantify the expression of MOR in SHSY-SY cells. 

Differentiation of SHSY-5Y cells with retinoic acid or phorbol ester up regulated MOR 

mRNA expression by 30 % and 78%, respectively. A 24 hours treatment with morphine 

(10 µM) down regulated MOR mRNA, an effect that was partially reversed by naloxone. 

However, after exposure to endomorphin-1, 2 for 24 hours, MOR mRNA expression is 

significantly increased in the differentiated and non-differentiated SHSY-5Y cells. 

Differences in intracellular cAMP accumulation are also observed in the differentiated 

and non-differentiated SHSY-5Y cells after the chronic exposure to morphine and 

endomorphin-1,-2. Taken together, a significant component of SHSY-5Y cellular 

adaptation during chronic morphine treatment may occur at the mRNA level and our data 

suggest different morphine or endomorphin-1, -2 mediated molecular events in the MOR 

receptor regulation. 
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1. Introduction 

Opioid receptors are classified into three subtypes: mu, kappa, and delta, which was 

reinforced by the development of highly selective ligands for each class [Loh and Smith, 

1990]. The genetic basis of the three opiate classes was identified with molecular cloning 

of mu, kappa, and delta opioid receptors [Chen et al., 1993; Wang et al., 1994; Evens et 

al., 1992; Meng et al., 1993]. Attention has now turned to receptor-mediated signaling 

pathways and receptor regulation. Opioid receptors belong to the G-protein-coupled 

receptor superfamily. Activation of opioid receptors stimulates inhibitory G proteins (G1) 

that suppress the activity of adenylyl cyclase (AC), leading to decreased intracellular 

3' ,5' cyclic adenosine monophosphate (cAMP) levels [Ueda et al., 1988]. Since mu 

opioid receptor (MOR) is thought to be the principal site of analgesic interaction [Raynor 

et al., 1995], studies of MOR offer potential molecular insight into the cellular 

mechanism of tolerance. The effect of chronic opiate administration through receptor 

regulation has turned out to be important to understand the molecular mechanism in the 

opioid receptor-mediated signaling pathway [Nestler et al., 1992]. 

Studies concentrating on the molecular basis of mu opioid receptor regulation use 

the SHSY-SY cell line that is a human neuroblastoma cell line, a subclone of the SK-N­ 

SH cell line [Kohl et al., 1980; Kuramoto et al., 1981]. It is of sympathetic adrenergic 

ganglia! origin [Scott et al., 1986] and expresses both mu and delta opioid receptors in a 

ratio of 5:1 based on receptor binding studies [Yu et al., 1988]. The administration of 

retinoic acid (RA) or 12-0-tetradecanoyl-phorbol-13-acetate (TPA) induces a cellular 

differentiation of SHSY-SY cells associated with a considerable reduction in proliferation 
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rate and an induction of neuritic processes [Kohring et al., 1998; Scott et al., 1986; 

Pahlman et al., 1990]. Pahlman et al. [Pahlman et al, 1990, 1995] have shown a series of 

biological and morphological differences between differentiated and non-differentiated 

SHSY-5Y neuroblastoma cells. It is also reported that the opioid receptor-mediated 

signaling pathway is associated with RA- and TPA-induced differentiation [Kohring et 

al., 1998]. Mu opioid receptor membrane density is enhanced in SHSY-5Y cells 

differentiated with either RA or TPA [Zadina et al., 1993, 1994]. Morphine, as well as 

the opiate peptides, endomorphin-1 and-2, are analgesic opiates selective for MOR. 

Both of them can induce tolerance in both differentiated and non-differentiated SHSY-SY 

cells [Zadina et al., 1994, 1997; Hamson et al., 1999, 2000]. Down-regulation of MOR 

in SH-SYSY cells was reported after exposure to IO µM morphine [Zadina et al., 1993}. 

While chronic morphine treatment decreases MOR membrane density [Zadina et al., 

1993], it may not involve internalization of MOR [Keith et al., 1996; Zhang ct al., 1998}. 

On the other hand, endomorphin-1 and -2 bind to the MOR at the cell surface and cause 

rapid endocytosis of MOR [McConalogue et al., 1999]. However, the detailed molecular 

events underlying MOR regulation remain unclear. 

In our current study, we evaluate MOR mRNA expression to delineate the molecular 

basis of MOR regulation in SHSY-SY cells. A sensitive and precise method of 

quantitative competitive reverse transcriptase polymerase chain reaction (QC-RT-PCR) 

has been developed using primers derived from the human MOR sequence to measure 

MOR rnRNA quantitatively. We concentrated on MOR mRNA expression following 

exposure to morphine, endomorphin-1, and -2, in the differentiated and non-differentiated 

SHSY-SY cells. We also measured intracellular cAMP accumulation in the differentiated 
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and nondifferentiated SHSY-5Y cells after the chronic exposure to the morphine and the 

endomorphins. Taken together, our data suggest different morphine or endomorphins 

mediated molecular events in the MOR receptor regulation. 
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2. Materials and Methods 

2.1 Chemicals and Peptides 

All trans-retinoic acid (RA), 12-o-tetradecanoyl-phorbol-13-acetate (TPA), morphine 

sulfate, and naloxone were purchased from Sigma Chemical Co. (St. Louis, MO). 

Endomorphins-1 and-2 were obtained from Phoenix Pharmaceuticals (Mountain View, 

CA). 

2.2 Cell Line and Culture Conditions 

SHSY-5Y human neuroblastoma cells (passages 20-30) were cultured in 10 % EFN 

medium containing a 1:1 ratio of Eagle's Minimum Essential Medium and F-12 with IO 

% fetal bovine serum (Gibco, Grand Island, NY). The cells were grown at 37° C in a 

humidified atmosphere containing 5% C02• 

2.3 Differentiation and Drug Treatment 

At about 65-75% confluence, SHSY-5Y cells were differentiated into a neuronal 

phenotype with RA or TPA as previously described (Zadina et al., 1993). Either RA (10 

µMin 0.1% ethanol) or TPA (16 nM in 0.1 % ethanol) was added to the media every 

other day. For total RNA isolation, the cells were cultured in T25-cm2ff75-cm2 flasks. 

Cells were cultured in 24-well plates for cAMP accumulation assays. Test compounds 

were added to the media 24 h after the final treatment with the differentiating agent, and 

the cells were prepared 24 h later for either RNA isolation or cAMP assay. To avoid the 

metabolism of the administered peptides, the cells were switched to serum-free EFN 

medium that contains a 1:1 ratio of Eagle's Minimum Essential Medium and F-12 

supplemented with insulin (bovine, 5 µg/ml), transferrin (human, 100 µg/ml), 
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progesterone (20 nM), putrescine (100 µM), and Na selenite (30 nM). Either 

endomorphin-1 or -2 was added with 'the last RA treatment for the last 24 hours of 

culture. 

2.4 Structure and Construction of Internal Standard Primers 

Construction of the internal standard was accomplished by synthesizing two 

oligonucleotides of approximately 75 bp each containing sequences for the 17 promoter, 

the MOR target gene (mRNA), a random spacer, and a housekeeping gene (beta-actin). 

The rcRNA (reconstructed RNA of internal standard DNA) forward primer contained the 

T7 promoter, MOR mRNA forward primer, random sequence, and beta-actin forward 

primer. The rcRNA reverse primer contained the beta-actin reverse primer, random 

sequence, MOR mRNA reverse primer, and a poly (dT) tail. The MOR forward primer 

(5'-TAC-CGT-GTG-CTA-TGG-ACT-GAT-3') was from position 962, and the reverse 

primer (5'-ATG-ATG-ACG-TAA-ATG-TGA-ATG-3') was from position 1103 of the 

genomic MOR gene (Wang et al., 1994). The beta-actin forward primer (5' -AGA-CCT­ 

CTA-TGC-CAA-CAC-AGT-3') was from position 2753 in exon 5, and the reverse 

primer (5'-GAC-ACA-CCT-AAC-CAC-CGA-GAT-3') was from position 3017 in exon 

6. There is a 124 bp intron E between exons 5 and 6 (Nudel et al., 1983). Therefore, the 

beta-actin primers will generate products of 161 bp from mRNA and 285 bp from 

genomic DNA. All primers were synthesized and purified by Oligo, Etc. (Wilsonville, 

OR). 

Reactions were conducted in a final volume 50 µI containing PCR buffer, 3 mM 

MgCh, 0.2 rnM of each dNTP, 20 pmol upper and lower rcRNA primer, 200 ng genomic 
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DNA from the SHSY-5Ycells or cDNA, and 1.25 units Taq DNA polymerase 

(AmpliTaq, Perkin-Elmer, Norwalk, CT). The reactions were heated to 94° C for 3 min, 

and immediately cycled 30 times through a 10-s denaturing step at 94° C, a 30-s 

annealing step at 59° C, and a 45-s extension step at 72° C. Following the final cycle, a 

5-min extension step at 72° C was included. The PCR products were diluted 1: 100 in 

water, and 2 µI were re-amplified using the conditions stated above. The second 

amplification PCR products were pooled and purified using the Magic™ Prep DNA 

purification system (Promega, Madison, WI). The pooled PCR products were transcribed 

into RNA by the T7 promoter using the Riboprobe® Gemini II in vitro transcription 

system (Promega). The DNA templates were removed by digestion with DNase I 

following the transcription reaction. The rcRNA was extracted according to the 

procedure of the Riboprobe® Gemini II in vitro transcription system (Promega), and 

quantitated by absorbance at 260 nm. Figure 1 shows the general procedure of the 

construction of the internal standard and the diagram of QC-RT-PCR. 

2.5 Quantitative Competitive RT-PCR 

Total RNA was extracted from SHSY-SY cells with TRlzol Reagents (GIBCO Invitrogen 

Life Technologies, Grand Island, NY). Competitive RT-PCR was canied out with the 

internal standard (IS) rcRNA as the competitor as described by Vanden Heuvel et al. 

(1993). For each sample, 6 aliquots of SH-SY5Y total RNA (50 ng each) were prepared, 

and a series of I :2 dilutions, from 0.625 pg to 20 pg, of the rcRNA internal standard (231 

bp) was added to these aliquots. Reverse transcription of RNA was performed in a final 

volume of 20 µl. The samples were incubated at 45° C for 30 min, and the reverse 

transcriptase was inactivated by heating to 99° C for 5 min. To these cDNA samples, a 
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PCR master mixture containing PCR buffer, l unit Tag DNA polymerase, and 10 pmol 

each of the MOR primers was added to bring the final volume to 50 µI. The reactions 

were heated to 94° C for 3 min and immediately cycled 30 times through a 20-s 

denaturing step at 94° C, a 20-s annealing step at 55° C, and a 20-s extension step at 

72°C. Following the final cycle, a 5 min extension step at 72° C was included. Aliquotes 

(15 µI) of the PCR products were electrophoresed on a 3% NuSieve®/1 % agarose gel 

(FMC Bioproducts, Rockland, ME), visualized by ethidium bromide staining, and 

analyzed using the AlphaEase™ Stand Alone Software. Quantitation of the amount of 

MOR rnRNA present was detennmcd as described (Vanden Heuvel et al., 1993; Gilliland 

et al., 1990). By titrating the unknown amount of MOR cDNA template against a dilution 

series containing known amounts of corresponding internal standard template, it should 

quantitate the amount of MOR mRNA. After electrophoresis, bands corresponding to 

Internal Standard and MOR cDNA were excised and a ratio of Internal Stand and MOR 

cDNA was calculated. As would be predicted of competitive templates, a plot of the ratio 

of internal standard to MOR cDNA versus the known concentration of input internal 

standard is linear when plotted on a Jog-log scale (figure 2). At the point where MOR and 

internal standard products are in equivalence (i.e. ration =1.0), the starting concentration 

of MOR prior to PCR is equal to the known starting concentration of the internal 

standard. Furthermore, we can obtain the amount of the MOR rnRNA from the extracted 

cell samples based on the known concentration of the Internal Standard rcRNA. The QC­ 

RT-PCR for the housekeeping gene, beta-actin, was also performed with the 285 bp 

internal standard as shown in Figure 2. 

2.6 cAMP Accumulation Assay 

7 



The SHSY-5Y cells were sub-cultured in 24-well culture plates. For endomorphin-1 

and -2 pretreatment, the 10% EFN growth medium was replaced with medium containing 

10 µM of either endomorphin-1 or endomorphin-2, and the cells were incubated for 24 h. 

After treatment, the medium was removed and replaced with 0.5 ml of EFN medium 

containing 0.5 mM isobutylmethylxanthine, a phosphodiesterase inhibitor, to block the 

breakdown of cAMP in SH-SYSY cells, and the cells were incubated for 30 min at 37° C. 

The culture medium was then removed and replaced with 0.5 ml of fresh medium with or 

without 25 µM forskolin. The cells were transferred to 37° C for 10 min. The medium 

was then removed, and the cells were rinsed once with 1 ml PBS. One-half milliliter of 

0.1 N HCI was then added to lyse the cells, and the monolayers were frozen at -20° C. 

For determination of cAMP content, the monolayers were thawed, and the intracellular 

cAMP level from the cell lysate in each well was measured by radioimmunoassay (RIA) 

[Amersham Pharmacia, Piscataway, NJ]. 

2.7 Data Analysis 

For MOR rnRNA quantification, each treatment was performed in triplicate, and 

duplicate gel electrophoreses were carried out. The cAMP accumulation assays were 

performed in duplicate on triplicate samples. MOR and beta-actin mRNA expression of 

each sample was measured by QC-RT-PCR, and the MOR mRNA level in each sample 

was normalized to the beta-actin level as follows: 

[mRNA MOR] •=li='= [mRNA MOR]/ [mRNA b<ta-,cbo] 

All statistical data are presented as mean ± SD unless other wise noted and analyzed 

using one way ANOV A where appropriate. Statistical significance was considered 

P<0.05. (P value of each comparison is shown in the legends of each figure. 
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3. Results 

3.1 Effects of RA and TPA on MOR mRNA Expression 

Both RA and TPA have been shown to induce differentiation of SHSY-SY cells 

(Scott et al., 1986; Kohring and Zimmermann, 1998; Pahlman et al., 1990, 1995). To 

determine if MOR mRNA expression is altered during differentiation, SHSY-SY cells 

were treated with either RA (10 µMin 0.1% ethanol) for 6 days orTPA (16 nM in 0.1 % 

ethanol) for 4 days to induce differentiation. MOR mRNA levels were then examined 

and compared to undifferentiated cells cultured in either 0.1 % ethanol (EtOH) or vehicle 

(growth medium). The MOR rnRNA level increased 1.3 fold after RA-induced 

differentiation (Fig. 3A) and 1.7 fold after TPA-induced differentiation (Fig. 38) when 

compared to undifferentiated SHSY-5Y cells. 

3.2 Effects of Morphine With and Without Naloxone Co-treatment on MOR mRNA 

Expression in SHSY -SY Cells 

To determine morphine's effects on the transcriptional regulation of the MOR, we 

examined MOR mRNA levels after chronic exposure to morphine in both 

undifferentiated SHSY-5Y cells and in SHSY-5Y cells induced to differentiate with RA 

orTPA. We observed that chronic morphine treatment (10 µM) for 24 h significantly 

decreased MOR mRNA levels in undifferentiated cells (0.1 % EtOH + vehicle treated) by 

47%, and that co-treatment with the opioid receptor antagonist, naloxone, completely 

blocked morphine's effects (Fig 4A). Chronic morphine treatment also significantly 

decreased MOR mRNA expression in both RA- and TPA-differentiated SHSY-5Y cells 

by 11 %, and 70%, respectively, compared to vehicle (Fig. 4B,C) These results are 

consistent with the binding assay data previously reported by Zadina et al. (1993). Co- 
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treatment with morphine and naloxone (lOuM) partially blocked morphine's effects in 

TPA-differentiated SHSY-SY cells (Fig. 4C), but did not block morphine's effects on 

MOR mRNA expression in RA-differentiated SHSY-SY cells (Fig. 4B). 

3.3 Effects of Endomorphin-1 and -2 on MOR mRNA Expression in SHSY-SY Cells 

Since endomorphins-1 and -2, two endogenous tetra peptide opiates, have been 

shown to have high selectivity and affinity for the MOR (Zadina et al., 1997), we next 

investigated whether treatment with either endomorphin-1 or -2 would affect MOR 

rnRNA regulation. Endomorphin-1 and -2 increased MOR mRNA levels in 

undifferentiated SHSY-5Y cells 3.7 fold and 2.5 fold, respectively, when compared to 

vehicle (Fig. SA), and also increased MOR mRNA levels in RA-differentiated SHSY-5Y 

cells (1.8 fold and 2.3 fold, respectively) when compared to vehicle (Fig. SB). Co­ 

treatment with naloxone and either endomorphin-I or -2 completely blocked 

endomorphin's effects in undifferentiated SHSY-5Y cells (Fig. SA). Interestingly, while 

naloxone completely blocked cndomorphin-2's effects in RA-differentiated SHSY-5Y 

cells (Fig. SB), it only partially blocked the effects of endomorphin-1. 

3.4 The Effects of Morphine, Endomorphin-1 and -2, and Naloxone on Forskolin 

Stimulated cAMP Accumulation in SHSY-SY Cells 

It has been reported that chronic exposure to morphine or to endomorphin-I or -2 can 

affect adenylyl cyclase activity (A vidor-Reiss et al., 1995; Monory et al., 2000). To 

investigate if the changes in MOR mRNA expression observed following morphine or 

endomorphin treatment were associated with a change in adenylyl cyclase, we examined 

forskolin-stimulated cAMP levels in undifferentiated SHSY-5Y cells chronically treated 

with morphine or with enodmorphin-1 or -2. Chronic morphine treatment resulted in a 

10 



20.1 fold up-regulation of cAMP production after forskolin stimulation as compared to 

only a 9.5 fold increase after vehicle treatment when compared to cAMP levels with 

forskolin alone (Fig. 6A). Conversely, after endornorphin-1 and -2 treatments, forskolin­ 

induced cAMP levels were observed to be about 4.7 fold, which is significantly lower 

than the 8.9 fold cAMP levels after vehicle treatment when compared to cAMP levels 

with forskolin alone. Co-treatment with the opioid antagonist, naloxone, inhibited 

morphine's and endomorphin-1 and -2's effects on forskolin-stirnulated cAMP 

accumulation, returning the stimulated cAMP levels to vehicle control levels. These 

results suggest that while morphine pretreatment results in a compensatory up-regulation 

of adenylyl cyclase activity, the endomorphins serve to suppress adenylyl cyclase 

activity. 

11 



4. Discussion 

First, in order to establish the baseline levels of MOR rnRNA expression in non­ 

differentiated and differentiated SHSY-5Y neuroblastoma cells, we measured the MOR 

mRNA expression in SHSY-SY cells with or without RA!fPA treatment. We observed 

that RA!fPA-induced differentiation of SHSY-5Y cells significantly increases MOR 

mRNA expression (Fig. 3.). To understand the differentiated phenotypes of SHSY-SY 

cells induced by RA and TPA, several observations have suggested that RA did not 

differentiate SHSY-SY cells sympathetically as TPA. For example, Pahlman et al. 

[Pahlman. et al., 1990, 1995] have shown that the biologically active phorbol ester TPA 

induces morphological and biochemical changes, i.c. extension of long processes, 

increased number of neurosecretory granules and higher concentration of noradrenalin. 

On the other hand, they found that RA-treated cells developed a slightly higher choline 

acetyltransferase activity, suggesting that they switch to a cholinergic phenotype. 

Moreover, many studies have been done on transcriptional regulation events of RA­ 

induced differentiation in different cell types, some of which are related to the MOR 

related signaling pathway, which will be discussed later. Although the differentiated 

phenotypes of SHSY-5Y cells induced by RA!fPA are not exactly same as each other, 

they still show similar effects on the MOR mRNA expression. 

Secondly, we investigated morphine's effects on the differentiated and 

nondifferentiated SHSY-5Y cells. It has been shown by several studies that opioid 

agonists that demonstrate equivalent abilities to activate MOR signaling exhibit 

remarkable differences in their ability to functionally desensitize MOR and induce MOR 
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internalization. Unexpectedly, morphine cannot perform MOR sequestration in some 

systems [Keith et al., 1996, Zhang et al., 1998}. However, the detailed molecular events 

underlying morphine's specific regulation of the MOR remain unclear. It has been 

reported by Zadina JE [Zadina et al., 1993, 1994] that chronic morphine treatment will 

down regulate MOR expression in SHSY-5Y neuroblastoma cells. Previous studies 

[Zadina et al., 1993] have also shown that the membrane density of MOR in SHSY-5Y 

cells was reduced, reaching the lowest level 24 hours after exposure to morphine. To 

investigate if the down regulation of MOR is involved in the transcriptional level, we 

measured MOR mRNA expression level after exposure to morphine for 24 hours. We 

found that the chronic morphine treatment decreased MOR mRNA expression in the 

differentiated and nondifferentiated SHSY-5Y cells, as shown in figure 4. The reduction 

in mRNA levels may be one of the mechanisms underlying the reduction of MOR 

binding sites following chronic treatment with morphine. 

We also investigated the effects of endomorphin-1, -2 on the MOR mRNA 

expression of the SHSY-5Y cells after exposure to these opiate peptides for 24 hours. 

The isolated peptides endomorphin-1 and endomorphin-2 have been suggested to be 

endogenous ligands for the mu-opioid receptor [Zadina et al., 1997]. Endomorphic 

analgesia was effectively blocked by naloxone [Fischer et al., 1999, Goldberg et al., 

1998]. Endomorphin-1, -2 bind MOR at the cell surface and cause rapid endocytosis 

with identical potency, similarly to DAMGO, an MOR-specific peptide agonist 

[McConalogue et al., 1999]. Endocytosis and trafficking of the MOR induced by 

endomorphin-1, -2 may mediate receptor desensitization and down-regulation, 

mechanisms that regulate cellular responsiveness to ligand stimulation [Bohm et al., 
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1997J. However, endomorphin -1, -2 significantly increased the MOR mRNA expression 

level, but did not reduce the MOR mRNA expression as chronic morphine treatment, as 

shown in figure 5. One possible reason is that the opiate peptide-associated signaling 

pathway can increase transcriptional factor binding activity, such as Sp transcription 

factors (Ko et al., 1998], which may be involved in the MOR gene transcription. 

From this study, the transcriptional regulation of MOR gene is shown to be a 

major mechanism that regulates MOR protein synthesis. The down regulation in receptor 

density could be due to a reduction in MOR mRNA levels. To shed light on the details of 

the molecular mechanisms that control MOR mRNA transcription, Loh et al. [Min et al., 

1994; Ko et al., 1998] has investigated the genomic structure and the transcriptional 

regulation factor of promoter of MOR gene. The putative promoter region contains 

consensus sequences for AP-1 and AP-2 transcription factors and potential cAMP 

response elements, in addition to a CCAAT box and SP1/SP3 site [Min et al., 1994; Xu et 

al., 2001 b]. Interestingly, it has been reported that treatment with MOR specific ligands, 

such as DAMGO, results in enhanced binding of SP1/Sp3 to the proximal promoter of 

human MOR gene [Xu et al., 2001 a]. 

Although the agonist mediated pathway that regulates MOR rnRNA transcription 

remains to elucidated, the RA-induced enhancement of MOR mRNA expression could be 

related to a series of signaling pathways and gene expression regulations, as shown by 

several other studies. For example, RA-induced differentiation resulted in increased 

levels of the inhibitory G proteins G1al and Gia2, and reduced amounts of Gso:, while the 

basal adenylyl cyclase activity was slightly increased [Ammer et al., 1994]. Moreover, 

exposure of mice to RA resulted in significant enhancement in the expression level of 
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cAMP response element binding protein (CREB) in murine branchial arches [Taylor et 

al., 1995]. As has been reported, the RA-initiated signaling pathway is mediated by the 

cAMP-dependent transcriptional regulation. This pathway requires specific nuclear 

transcriptional factors, such as CREB-binding protein (CBP/p300) and p300/CBP­ 

associated factor (p/CAF), which exhibits strong histone acetyltransferase (HAT) activity 

[Korzus et al., 1998; Kawasaki et al., 1998]. Furthermore, Intunisi et al has recently 

reported that RA-induced differentiation also enhanced the MOR mRNA expression, 

which is associated with higher expression level of c-fos mRNA as well as increased AP­ 

I DNA binding in the SHSY-5Y neuroblastoma cells [Jenab et al., 2002]. Based on the 

above mentioned results, the effects of RA-induced differentiation on transcriptional 

factors are speculated to be involved in the up-regulation of the MOR mRNA expression. 

Moreover, we can speculate about a possible feedback mechanism between receptor 

activation and receptor regulation, as shown in Figure 7. 

Because adenylyl cyclase is involved in the agonist mediated regulation of MOR, 

we wanted to further compare the morphine and endomorphin-1, -2 associated MOR 

mediated signaling pathway by detecting adenylyl cyclase activity of SHSY-5Y cells 

after exposure to morphine and endomorphin-1, 2. As has previously been shown by 

Blake et al., [1998] we also found that the chronic morphine treatment could cause an 

adaptive sensitization of adenylyl cyclase, and result in a compensatory upregulation of 

cAMP production (Fig. 6). However, chronic treatment with opioid peptides 

endomorphin-1, -2 doesn't induce the upregulation of forskolin stimulated cAMP 

accumulation, but reduces adenylyl cyclase activity (Fig. 6). 
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Our current studies indicated that the effects of morphine and endomorphin-1,-2 

on MOR receptor regulation are mediated by distinct molecular events. To delineate 

these events, further investigation is needed on the specific transcriptional factors and 

activities involved in MOR regulation that correlate with the differential effects of 

morphine and endomorphin-1,-2. 
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5. Conclusion 

1. Differentiation with either RA or TPA did not change expression of beta-actin mRNA 

in SHSY-5Y cells, but increased MOR mRNA expression in SHSY-5Y cells. 

Differentiation seems to alter how naloxone reverses morphine's regulatory effects on 

MOR mRNA in these cells. 

2. Chronic morphine treatment decreased MOR mRNA expression in both non­ 

differentiated and differentiated SHSY-5Y cells with either RA or TPA. Morphine has 

been reported not to induce MOR endocytosis in many systems, a reduction in MOR 

mRNA following chronic treatment with morphine may be one of the mechanisms 

underlying the reduction of MOR binding sites following chronic treatment with 

morphine. 

3. Treatment with endomorphin-I or -2 is known to induce MOR internalization. 

However, each of these two opioid peptide agonists increased MOR mRNA level in both 

non-differentiated SHSY-SY cells and the cells differentiated with RA. Naloxone co­ 

treatment completely reversed the effects of endomorphin-1,-2 in non-differentiated, but 

not in RA-differentiated SHSY-SY cells. 

4. Forskolin induction of intracellular cAMP levels was enhanced by chronic treatment 

with morphine in SHSY-SY cells without differentiation. This is consistent with 

previous report on supersensitization of MOR activity by chronic treatment with 

morphine. In contrast, SHSY-SY cells treated with either endomorphin-1 or -2 reduced 

significantly forskolin induction of cAMP levels. 

In summary, our data suggest that morphine and endomorphins-1 and -2 have differential 

effects on MOR receptor regulation in the SHSY-SY neuroblastoma cells. 
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