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ABSTRACT 

Chronic inflammation left unchecked can be quite harmful to the tissue with the 

pro-inflammatory stimulus. It is marked by the recruitment and activation of leukocytes, 

including lymphocytes and macrophages with their subsequent proliferation and reactive 

oxygen species release. Macrophages are also one of the primary players in propagating 

the inflammatory response as they secrete pro-inflammatory cytokines to sustain local 

tissue responses. Current therapies for chronic inflammation include non-steroidal anti­ 

inflammatory drugs and glucocorticoids; however, both have various side effects and 

setbacks. Somatostatin is an endogenous hormone which inhibits cellular secretion and 

proliferation throughout the body. Somatostatin receptor activation is mediated through a 

family of heterotrimeric guanine nucleotide coupled proteins (G-proteins) belonging to 

the Gi and G0 family of G-proteins. In this study, we show that a murine macrophage cell 

line, RA W264.7, transcribes the mRNA and expresses the protein of the somatostatin 

receptor 2B subtype. We also demonstrate that this receptor reduces cytokine-induced 

phosphorylation of the ST A T-3 transcription factor. Taken together, these data suggest 

the functional presence of a somatostatin receptor in the RAW 264. 7 macrophage cell, a 

cellular model of the murine macrophage. 
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INTRODUCTION 

Chronic inflammation is a prolonged, inflammatory response which persists after 

the initial actions of the acute inflammation response (Gilliland 1989; Geboes 1994). A 

hallmark of chronic inflammation is the involvement of monocytes and macrophages. 

Monocytes are blood-borne cells that, when stimulated, transmigrate through the 

endothelial layer of the blood vessel. The monocyte undergoes chemotaxis in response to 

soluble chemical mediators and, following diapedesis, differentiates into the tissue 

resident macrophage cell (Cross et al. 1997; Stout and Suttles 2004). Macrophages 

perform two key functions in inflammation, the generation of reactive oxygen species 

(ROS) production and the secretion of cytokine. ROS are rapidly released in response to 

a pro-inflammatory stimulus, but their damage extends to local tissues as well. Cytokines 

are the major chemical mediators that drive the chronic inflammatory process; the notable 

cytokines released by macrophages are TNF-a, IL-1 and IL-6 (Denis et al. 1991 ;  Shacter 

et al. 1993). Macrophages and other immune cells in the inflamed tissue are activated by 

these pro-inflammatory cytokines, resulting in cellular proliferation and the secretion of 

additional cytokines (Badolato and Oppenheim 1996). 

Chronic inflammatory diseases account for significant morbidity and mortality 

(Pleis and Lethbridge-Cejku 2006; Hootman et al. 2006). Examples include rheumatoid 

arthritis, inflammatory bowel diseases ( e.g. Crohn' s disease), tuberculosis, chronic 
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obstructive pulmonary disease and chronic cholecystitis. Many of the chronic 

inflammatory diseases are without cures; however, anti-inflammatory agents are used to 

help control the inflammatory process (Dale and Haylett 2004). Non-steroidal anti­ 

inflammatory drugs (NSAIDs) are commonly used as many possess anti-inflammatory, 

analgesic and antipyretic actions. NSAIDs work to reduce vasodilatation, thereby, 

reducing leukocyte transmigration through the endothelial layer of the blood vessel. 

However, chronic NSAID use is associated with side-effects (Davies et al. 2006; Gooch 

et al. 2007). Gastrointestinal disturbances, skin reactions, adverse renal effects, bone 

marrow depression, liver disorders and even a type of encephalitis (Reye's syndrome) 

have been associated with large doses or long term use of NSAIDs. Other anti­ 

inflammatory agents include glucocorticoids and anti-rheumatoid drugs (Dale and 

Haylett 2004): 

The body's endogenous hormones are associated with either promoting or 

attenuating inflammatory responses. For instance the ovarian hormone, estrogen, is 

considered to be anti-inflammatory (Geraldes et al. 2006; Xing et al. 2007). Peptide 

hormones are also thought to be of considerable importance in maintaining an 

inflammatory balance. For example, corticotrophin-releasing hormone is thought to be 

pro-inflammatory (Zoumakis et al. 2000) while, the hormone somatostatin (Somatotropin 

inhibitory releasing hormone; SRIF) has been shown to be anti-inflammatory (Helyes et 

al. 2001 ). SRIF is an endogenous peptide shown to exert its effects on endocrine, neural, 

grastrointestinal and immune cells (Weckbecker 2003; Blake et al. 2004). Overall, SRIF 

controls cell proliferation and secretion. For example, SRIF modulates endothelial 
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inflammation and immune cell recruitment in coronary artery disease and has 

demonstrated clinical utility in treating refractory rheumatoid arthritis (Badway and 

Blake 2005; Blake et al., 2007). SRIF analogues have been used to control the 

hypersecretion of growth hormone in patients with acromegaly (Melmed et al. 2005). 

The anti-inflammatory properties of SRIF make it an attractive target for treatment of 

chronic inflammation. 

SRIF exists as two active peptides in mammals, SRIF-14 and SRIF-28, both of 

which are derived from a common precursor, pre-prosomatostatin (Reichlin 1983) .  

SRIF-14 and SRIF-28 are found in the gastrointestinal tract, central nervous system, 

immune cells and certain tumor cells, in which the peptides are produced in a tissue­ 

selective manner (Patel 1999). SRIF-14 is mainly localized in the central nervous 

system, while SRIF-28 is located in the gastrointestinal and immune tissues (Reisine and 

Bell 1995;  de Lecea 2005). SRIF-28 and SRIF-14 differ in the amino terminus with 

SRJF-28 possessing an amino-terminal extension of 14  amino acids compared to SRJF- 

14. SRIF-14 and SRIF-28 share a common pharmacophore amino acid sequence FWKT, 

which is held in a �-tum configuration through an internal cysteine disulfide linkage 

(Patel and Reichlin 1979). This pharmacophore sequence has facilitated the development 

of stable, peptidyl and non-peptidyl agonists and antagonists, (Weckbecker et al., 2003; 

Blake et al. 2004; Vaysee et al. 2005). 

SRIF exerts its intracellular actions by binding to a family of homologous G­ 

protein coupled receptors (GPCRs). The SRIF receptor family originates from five genes 

but includes six different receptors labeled sst.., with sst- having two splice variants, sst2A 
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and sst28. The SRIF receptors are chiefly coupled to the G, and G0 proteins which are 

known to exert predominately inhibitory actions in the cell (Hoyer et al. 1995) .  The 

SRIF receptor signaling cascade includes the control of intracellular cyclic nucleotide 

levels, reductions in protein phosphorylation states and the regulation of intracellular ion 

concentrations (Weckbecker 2003). The exact signaling cascades for these two events 

are dependent on receptor subtype and tissue distribution. 

The RA W264.7 cell line was established from a tumor induced by Abelson 

murine leukemia virus in the BALB/c adult male mouse (Raschke et al. 1978). RAW 

264. 7 cells are extensively used in the study of mouse monocyte function as these cells 

possess a number of desirable features, including the ability to undergo transformation 

from monocytes to macrophages in response to a range of physiologically relevant 

stimuli. Two early studies have demonstrated that RAW 264.7 cells are responsive to 

SRIF peptides, yet the molecular target of this activity remains unknown (Bellocq et al. 

1999; Ahmed et al. 2001) .  Recently, human macrophages have been shown to transcribe 

sst, and sst, mRNA, and a complex functional responsiveness has been shown (Armani et 

al. 2007). 

In this study, we aim to identify the molecular target of the SRIF peptides in the 

RAW264.7 cell line. The goal of the present study was two-fold: ( 1 )  to determine if the 

sst, receptor splice variants sst2a and sst2b are expressed in RAW 264.7 cells and (2) 

demonstrate a function for the sst, receptor. The results of this study demonstrate that a 

subtype of the sst, receptor does functionally exist in the RA W264.7 cell line. 
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MATERIALS AND METHODS 

Materials 

The murine monocyte/macrophage cell line (RA W264.7) was purchased from 

American Type Culture Collection (Manassas, VA). Sterile cell culture plasticware was 

obtained from Mid-West Scientific (St Louis, MO). Cell culture media (RPMI and Opti­ 

Mem) and washing buffers (Phosphate Buffered Saline) were purchased from Invitrogen 

Life Technologies (Carlsbad, CA). SRIF and LIF were purchased from Peninsula Labs 

(Belmont, CA) and Chemicon International (Temecula, CA). 1 81/z gauge syringe needles 

were obtained for Becton Dickinson and Company (Rutherford, NJ). cDNA was 

synthesized with use of the Superscript One-Step RT-PCR system from Invitrogen Life 

Technologies (Carlsbad, CA). Synthetic oligonucleotide primers were purchased from 

Invitrogen Life Technologies (Carlsbad, CA). Somatostatin receptor 2A and 28 

antibodies, with the corresponding blocking peptides, were obtained from Santa Cruz 

Biotechnology, Inc (Santa Cruz, CA); the phospho-STAT-3 antibody was obtained from 

Cell Signaling Technology (Danvers, MA). SDS-PAGE and Western blotting supplies 

were purchased from Invitrogen Life Technologies (Carlsbad, CA). Chamber slides for 

confocal microscopy were obtained from Nunc Inc. (Naperville, IL). Donkey serum was 

purchased from Santa Cruz Biotechnology, Inc (Santa Cruz, CA). Vectashield sealant 
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and fluorescein-tagged secondary anitbodies were obtained from Vector Laboratories 

(Burlingame, CA). 

Cell culture 

The RA W264. 7 cells were cultured in T-75 crrr' flasks and 24 well cell culture dishes 

with Roswell Park Memorial Institute medium, RPMI, (supplemented with GlutaMAXT11, 

pencillin (lOOU/mL)/streptomycin (100 mg/mL), and 10% fetal calf serum) at 37°C in a 

humidified atmosphere (5% C02/95% air). The cell cultures were passaged when the 

flasks reached � 7 5 % confluence (by visual inspection) and allowed at least 48 hours to 

recover before experimentation. 

Messenger RNA (mRNA) isolation and reverse transcriptase polymerase chain reaction 

(RT-PCR) 

Murine mRNA was isolated from the RA W264.7 cell line using the FastTrack@ 

2.0 mRNA Isolation Kit according to the manufacturer's instructions (Invitrogen Life 

Technologies, CA). RA W264.7 cells were washed in cold (4°C) phosphate buffered 

saline; the cells were then passed through an 18 .5  gauge needle 4 times. Cell samples 

were lysed at 45°C for 20 minutes. The NaCl final concentration was then adjusted to 

0.5M; subsequently, the lysates were passed through an l 8Y2 gauge needle 4 times. Oligo 

dT cellulose was added to the lysates and incubated at room temperature for 60 minutes. 

Beads were washed and eluted according to manufacturer's instructions. The mRNA was 
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precipitated with 2M sodium acetate and 200 proof ethanol and frozen on dry ice. The 

mRNA was finally resuspended with the kit's elution buffer and stored at -80°C. 

Isolated murine mRNA was reverse transcribed and amplified with the 

polymerase chain reaction using the Superscript One-Step RT-PCR system. cDNA 

synthesis was performed with an initial 50.0°C incubation for 30 minutes with reverse 

transcriptase; subsequent PCR [94.0°C, 15s ;  60.0°C, 30s; 72.0°C, 30s] of 40 cycles and a 

final extension at 72.0°C for 5 minutes was sufficient to amplify the cDNA products. 

Primer sets described by Eliott et al. (1999) are: Total SSTR2-f = 

CTTGGCCA TGCAGGTGGCGCTAGT, Total SSTR2-r = 

A TGGGGTTGGCGCAGCTGTTGG, SSTR2A-f = 

CTTGGCCA TGCAGGTGGCGCT AGT, SSTR2A-r = 

TTGTCCTGCTT ACTGTCGCTCCTCT, SSTR2B-f = 

CTTGGCCATGCAGGTGGCGCT AGT, SSTR2B-r = 

TCCGGA TTGTGAA TTGTCTGCCTTGA . A final reaction mixture (50 µL) consisted 

of IX Reaction Mix Buffer containing SuperScript RT/Platinum Taq Mix, 10  µM 

forward and reverse primers and template mRNA. Thermal cycling was performed using 

an Applied Biosystems 2720 Thermal Cycler (Applied Biosystems, Foster City, CA). 

RT-PCR products were analyzed following horizontal gel electrophoresis with a 

1 .5% agarose gel in 1 X T AE buffer (lnvitrogen Life Technologies, CA) and stained with 

ethidium bromide ( 10  µg/mL). Digital images of the gel were obtained with aid of the 

Gel-Doc It 300 Imaging System and its corresponding software (UVP, Inc., CA). 
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Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

Blotting 

RA W264. 7 cells were grown in 24-well plates with complete RPMI medium for 

48 hours and starved on serum-free medium. The starved-cultured cells were incubated 

with and without 1 0  ng/µL LIF and 100 nM SRIF for 1 5  minutes at 37°C. After 

treatment, RA W264.7 cells were lysed with 1 X NuPAGE LDS sample buffer. Cell 

lysates were passed through a 26 '12 gauge needle and heated at 70°C for 1 0  minutes, 

separated with NuPAGE 10% BIS-TRIS polyacrylamide gels , electro blotted onto 

polyvinyldifluoride (PVDF) membranes and treated for 1 . 5  hour in 10% (w/v) bovine 

serum albumin blocking buffer (Fluka Biochemicals/Sigma-Aldrich, St. Louis, MO). 

SSTR2A and SSTR2B were detected with a 1 :200 dilution of SSTR2A or SSTR2B 

primary antibodies, respectively. Phospho-ST A T3 was detected with a 1 :2000 dilution of 

an affinity purified phospho-STA T3 antibody. Antibody binding to the PVDF 

membranes was detected using a horseradish peroxidase-conjugated secondary antibody 

at a 1 :2000 dilution. The resulting immunoreactivity was detected using ECL 

chemiluminescence (GE Healthcare Life Sciences, Anaheim, CA). Digital images of the 

membrane were obtained with a STORM Phosphorimager (GE Healthcare, NJ), and 

densitometric analysis was performed with NIH Image.J and quantified using GraphPad 

Prism 4.0 (GraphPad Software, Carlsbad, CA). 
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Fluorescence laser scanning confocal microscopy 

RA W264.7 cells were grown in Lab-Tek® 4-well, 1 . 8  cm2/well glass chamber 

slide with complete RPMT medium for 48 hours and starved in serum-media for 24 hours. 

The starved-cultured cells were incubated in the presence of absence of ligands for 15  

minutes at 37°C. The cell monolayers were fixed with 4% paraformaldehyde, rinsed and 

incubated with a 1 : 1 0 0  of the SSTR2A or SSTR2B antibody in 1% normal donkey 

serum. A fluorescein-tagged secondary antibody, with O.lµg/mL DAPI, was then 

incubated with the cell monolayers in l % normal donkey serum. Peptide blockade of the 

antibodies was carried via an overnight incubation of the antibodies with a five-fold 

excess (by weight) of the blocking peptides at 4°C. Antibody stained cells were mounted 

with Vectashield. Scanning laser confocal microscopy ( excitation wavelength = 495 nm, 

emission wavelength= 530 nm) was performed with an Olympus Fluoview™ FVlOOO 

Confocal Microscope (Olympus, USA), and digital images were obtained with Olympus 

Fluoview FVI 0-ASW Version l .3a software (Olympus, USA). 
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RESULTS 

Somatostatin Receptor Subtype 2B mRNA present in RA W264. 7 cells 

The initial study on RAW 264. 7 expression of SST receptor subtypes used 

isolated mRNA and RT-PCR, in conjunction with receptor subtype specific 

oligonucleotide primers. cDNA was transcribed from the isolated mRNA of the 

RA W264.7 cells and amplified using RT-PCR. Primers selective for the 2A and 2B 

subtypes (Fig. 1 ), used in conjunction with RT-PCR and agarose gel electrophoresis 

revealed a cDNA band at -200 bp (Fig. 2). Specific primers for either the 2A or 2B 

subtype were used to further delineate which receptor subtype was present. Based upon 

these results (Fig. 2), the 2B receptor subtype appeared to be the dominant receptor 

subtype transcribed. 

A band -200 bp for cyclophilin B was observed as a positive control for RT-PCR. 

However, the negative control (null RT) contained the same size band indicating a 

possible genomic DNA contamination in the mRNA template. A null template control 

resulted in the same band as the negative RT-PCR control, suggesting the DNA 

contamination was present in the cylcophilin B primer stocks and not the isolated mRNA 

template. 
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Figure 1. G-Protein Coupled Receptor Model. The SST receptor is a classical 7-TM 
receptor coupled to a heterotrimeric G-protein. The intracellular tail is the carboxy 
terminus of the protein. The sst2a and sst2b receptors differ only in the size of carboxy 
terminus as shorter sst2b is a splice variant of sst2a Primers and antisera used in this study 
are able to distinguish between the two splice variants to elucidate exactly which subtype of 
the sst2 receptor exists in RA W264.7 cells. 
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Figure 2. RT-PCR of RA W264.7 mRNA. RA W264.7 mRNA was reverse transcribed at 50.0°C for 
30 minutes; the subsequent cDN A was amplified by 40 cycles of PCR [94.0°C, 15s;  60.0°C, 30s; 
72.0°C, 30s] with a final extension step at 72.0°C for 5 minutes. Top Panel: The band at 
approximately 200 bp is the anticipated size for the somatostatin receptor subtype 2 cDNA amplified 
from the isolated mRNA. Primers able to recognize both receptor subtypes (2A and 28) were used in 
the Total SSTR2 lane. Primers specific for a single subtype of SSTR2 revealed that SSTR2B is the 
dominantly expressed receptor. Bottom left panel: Cyclophilin B, a housekeeping gene, was used as a 
positive control for RT-PCR; however, a band was present with no reverse transcriptase indicating 
possible genomic DNA contamination in one of the reagents. Bottom right panel: RT-PCR with no 
mRNA template indicated that the Cylcophilin B primers were the reagents with genomic DNA. 
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Somatostatin Receptor 2B protein expressed in RA W264. 7 cells 

Antibodies for the sst2a and sst2b receptor subtypes were obtained from a 

commercial source. Each antibody recognizes one of the two splice variants of the sst2 

receptor carboxyl terminal amino acid sequences (Patel et al. 1994). We used these two 

antibodies to determine which sst2 receptor splice variant might be expressed in the 

RAW 264. 7 cells. Total cell lysates were prepared from RAW monolayer cultures, 

resolved by SDS-PAGE, electroblotted and probed with either the sst2a or sst2b selective 

antiserum. As shown in the top panels of Figure 3, the somatostatin receptor 2b receptor 

is endogenously expressed in RA W264. 7 cells. AtT-20 cells, a murine adenocorticotroph 

cell line that expresses sst2a and sst2b, as well as sst5 (Sarret et al., 1998� Strowski et al., 

2002), serves as a positive control for the sst2a and sst2b subtypes. We observed that the 

sst2a selective antiserum recognized an AtT-20 cell protein band at approximately 40 

kDa, in agreement with earlier studies, but that the sst2a antiserum did not appear to 

recognize a corresponding band in the RAW 264. 7 cell samples (Fig. 3 ). In contrast, the 

sst2b antiserum detected a protein band at -40 kDa, which was present in both the RAW 

264.7 cell lysates and in the AtT-20 cell control lysates (Fig. 3). Based upon the results 

obtained from the RT-PCR experiments and the Western blotting experiments, it appears 

that only the sst2b receptor is present in RAW 264. 7 cells. 

Indirect immunofluorescence, in conjunction with laser scanning confocal 

microscopy was used to further establish the presence of the sst2b receptor in individual 

RAW 264.7 cells (Fig. 4). Nuclear DNA staining was visualized with 4',6-diamidino-2- 

phenylindole (DAPl) in conjunction with the sst2a and sst2b polyclonal antisera. Indirect 
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Figure 3. Western Blot analysis using the somatostatin receptor subtype selective 
antibodies. Antibodies against the two somatostatin receptor 2 subtypes were used to 
identify which proteins were present in RA W264.7 (R) cells. Western blot scans using 
either the 2A (top panel) or 28 (bottom panel) selective antibodies as probes are shown. 
AtT-20 (A) cells are positive controls for both subtypes. Evidence for the 28 receptor in 
the RA W264.7 cells is seen with the band at -40 kDa. 
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SSTR2A 

SSTR2B 

Figure 4. Confocal Microscopy using the subtype selective antibodies. Antibodies against the two somatostatin receptor 2 
subtypes were used to identify which proteins were present in paraformaldehyde-fixed RA W264.7 cells. Top panels (A-D): 
RA W264.7 cells incubated with the 2A antibody. Control treatments lacking the primary antibody (Panel A) and the 
secondary antibody (Panel B) are shown. Primary and secondary antibody treatment reveaJs diffuse cytoplasmic staining of 
the 2A antibody in RAW 264.7 cells (Panel C). Peptide blockade of the 2A antibody serves as a negative control (Panel D). 
Bottom panels (E-H): RA W264.7 cells incubated with the 2B antibody. Control treatments lacking the primary antibody 
(Panel E) and the secondary antibody (Panel F) are shown. Primary and secondary treatment reveaJs organelle-membrane 
localized 2B antibody binding in the RA W264.7 cells (Panel G). Peptide blockade of the 2B antibody serves as a negative 
control (Panel H). Nuclear staining was obtained with DAPI. 
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immunofluorescence staining with the sst2a antisera demonstrated a diffuse cytoplasmic 

pattern, suggesting significant non-specific binding (Fig. 4, panel C). In contrast, the 

sst2b antibody staining pattern exposes an intense signal in a highly localized fashion 

suggesting presence of this receptor subtype in the RA W264.7 cells (Fig. 4, panel G). 

Incubation of the sst2a and 2b antibodies with their respective blocking peptides before 

antibody treatment to the cells resulted in an absence of fluorescence when the treated 

cells were imaged (Fig. 4, panels D and H). Peptide blockade of antibodies serves as a 

control for antibody specificity. These peptide blockade results suggest that the 

antibodies are binding to the somatostatin receptor proteins. 

Taken together, the molecular data from the RT-PCR, Western Blot and Confocal 

Microscopy experiments show evidence for the endogenous expression of the 

somatostatin receptor 28 subtype protein in RA W264.7 cells. 

Somatostatin Receptor 2 subtypes reduce cytokine-induced ST A T-3 phosphorylation 

With evidence for sst2b receptor expression in RA W264. 7 cells, we next sought 

functional evidence for the sst2b receptor protein. To show sst2b receptor function, 

RA W264.7 cells were treated withlO ng/µL LIF (pro-inflammatory cytokine) and/or 100 

nM SRIF-14. Treated cells were lysed, resolved, electroblotted and probed with a 

phospho-specific STA T-3 antibody (Fig. 5). Densitometric analysis of the resulting 

Western Blot scans revealed a significant (p<.01) cytokine-induced increase in STAT-3 

phosphorylation. SRIF-14 treatment alone did not significantly vary from basal 

phoshorylation levels; however, SRIF-14 co-treatment with LIF resulted in a significant 
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Figure 5. SSTR activation decreases cytokine-induced ST A T-3 phosphorylation, as determined 
with a STAT-3 phospho-specific antiserum. RA W264.7 cells were treated with 100 nglµL LIF 
and/or 100 nM SRJF-14 for 15  minutes at 37"C. Top right panel: A representative Western blot 
scan using a phospho-specific STAT-3 antibody. Bar graph: Densitometric analysis of the 
Western blot scans shows densitometric data against control. LIF significantly increases ST AT- 
3 phosphorylation (p<.01); however, SRJF co-treatment resulted in a significant decrease in 
STAT-3 phosphorylation (p<.05). All data are significant at p < .05. 
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(p<.05) reduction in ST A T-3 phosphorylation levels when compared to the LIF 

treatment. This result shows functional evidence for the sst2b receptor in RA W264. 7 

cells. 

Taken together, the data from the RT-PCR, Western blot, confocal microscopy 

experiments and functional assays describe the functional expression of the somatostatin 

28 receptor in RA W264. 7 cells. 
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DISCUSSION 

Chronic inflammation serves as a vital tool employed by the body to deal with 

harmful stimuli that are not easily rid of through acute inflammation. Left unchecked, 

however, chronic inflammation can progress from a nuisance into a life-threatening 

disease. The delicate balances of the chemical mediators that control chronic 

inflammation are paramount to the body's ability to recover from this less-than-desirable 

condition. Up-regulation in the production of these chemical mediators ( e.g. cytokines) 

sustains the chronic inflammatory response in the origin of the stimulus. Macrophage 

involvement is a hallmark of chronic inflammation; macrophages facilitate two very 

destructive processes in the eyes of the host tissue: reactive oxygen species production 

and cytokine secretion. Reactive oxygen species can significantly damage host tissue, 

whereas cytokines are the chemical mediators that encourage macrophage proliferation 

and secretion of more pro-inflammatory cytokines. Over time these processes will 

concur to subject host tissues to devastating effects, which is why effective treatments for 

chronic inflammatory diseases are absolutely necessary. 

In this study we show that a murine macrophage cell line (RA W264.7) 

functionally expresses the somatostatin receptor subtype 2B. Reverse transcription of 

isolated mRNA from these cells reveals that, indeed, these cells do express the transcript 

for the somatostatin receptor 2 subtype. Primers specific for the subtypes of the 2 
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receptor delineate that the 2B receptor is the major subtype that is transcribed in these 

cells. Cyclophilin B served as a positive control for this experiment as it is a 

housekeeping gene which is consistently expressed in peripheral blood cells (Pachot et al. 

2004 ). One disturbing result is the presence of a band in the no RT control of the 

cyclophilin B RT-PCR. Subsequent control experiments (i.e. no template controls) 

resulted in the same band in the no RT treatment; this concludes then that the cyclophilin 

B primers, not the mRNA template, were contaminated with genomic DNA. 

Once we identified that these cells transcribe the correct mRNA, we sought to 

find the expressed protein using immunolabeling. Western blot and confocal microscopy 

showed that the RA W264.7 cells did indeed express the 2B subtype of the somatostatin 

receptor. The non-specific, cytoplasmic binding pattern of the 2A receptor antibody 

suggested that the protein was not highly expressed at basal conditions; on the other 

hand, the 2B receptor antibody binding pattern showed a high degree of localization 

around the nucleus. We have not identified what compartment of the cell the binding is 

localized in (i.e. endoplasmic reticulum versus plasma membrane), but this binding 

pattern gives us significant evidence that indeed the 2B receptor subtype is expressed at 

basal conditions in these murine macrophage cells. Successful peptide blockade of the 

antibodies suggest that the antibodies are specific enough for our uses. 

Functionality of the identified receptor was the next thing to establish in this 

study. Leukemia inhibitory factor (LIF)-, a member of the IL-6 cytokine family, induced 

phosphorylation of the transcription factor STAT-3 was readily observed as expected. 

Co-treatment ofLIF with an agonist for the somatostatin receptor 2B subtype (SRIF-14) 
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significantly decreased the phosphorylation of STAT-3. This result suggests that there is 

a possible crosstalk between the SRIF GPCR and the IL-6 family of receptor tyrosine 

kinases. Indeed, somatostatin decreases IL-6 secretion by LPS-activated human 

monocytes (Peluso et al. 1996). A proposal for the junction between these two pathways 

is at phosphotyrosine phosphatases (PTPs). Somatostatin receptors are known to activate 

PTPs which lead to downstream events such as increased apoptosis and decreased cell 

proliferation (Reyl and Lewin 1982). In this model, an activated PTP by the somatostatin 

receptor 28 subtype dephosphorylates the Janus kinase-phosphorlyated ST AT-3 

transcription factor. STA T-3 translocation into the nucleus is dependent upon 

phosphorylation and dimerization and it promotes the transcription of proliferative and 

pro-inflammatory genes. PTP activation could inhibit this dimerization event and result 

in decreased cell proliferation and reduced cytokine production and secretion. 

Somatostatin is an endogenous peptide which exerts many inhibitory effects in the 

body. Its anti-prolfierative and -secretive functions seen in various tissues of the body 

suggest it may be a favorable target for chronic inflammatory diseases (Weckbecker 

2003). This study describes the functional presence of the somatostatin 28 receptor in a 

murine macrophage cell line. These results give hope to the idea that somatostatin 

receptor activation, via small-molecule mimics of the somatostatin peptide, will decrease 

the proliferation and cytokine secretion of chronically activated macrophages and serve 

therapeutic applications for chronic inflammatory diseases. 
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