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Abstract: 

Somatostatin (somatotropin release inhibitory factor, SRIF), inhibits animal cell 

secretion and proliferation. SRIF is transcribed from a single gene as a 1 t 6 amino acid 

precursor that is cleaved in a cell specific manner into two distinct peptides, SRIF-14 and 

SRIF-28. Each binds with high affinity to all five known SRIF-receptor subtypes (sst, - 

ssts) and several of these receptor subtypes are endogenously expressed in the AtT-20 

cell, a murine pituitary corticotroph. SRIF receptors belong to the G protein-coupled 

family of integral membrane receptors. Within the SRIF receptor family, it has been 

shown that the sst, receptor subtype exists as splice-variants (sstzA and sst28) that exhibit 

over-lapping tissue expression. The sstzA and sstze splice-variants occur within the 

carboxyl-tenninus of the receptor, an area of the protein, which is not involved in ligand 

binding, thereby making a phannacologic distinction of these two subtypes extremely 

difficult. Indeed, the function of these receptor splice-variants, as well as the significance 

of their cellular co-expression is unknown. To delineate the function of these closely 

related receptors, we have employed double-stranded RNA interference ( dsRNAi), a 

highly selective post-transcriptional gene silencing method. dsRNAi allows sst2A mRNA 

to be specifically targeted and inhibited while testing the functional capabilities of the 

remaining receptor population. When used in conjunction with receptor subtype selective · 

agonists, dsRNAi provides a powerful genetic tool to explore receptor function. In the 

current study, we inhibit the expression of the sshA receptor with dsRNAi, and examine 

the functional consequences of this inhibition by monitoring receptor protein expression 

with subtype selective antibodies, as well as assessing the functional consequences of this 

inhibition on intracellular cAMP accumulation. Our results demonstrate that RNA 

silencing oligonucleotides against the sshA carboxyl terminus can be incorporated into 
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AtT-20 cells in a time and concentration-dependent manner. Fu.rthcnnore, the uptake of 

these sst2A inactivating oligonuclcotides, suppresses sst?A receptor expression and inhibits 

receptor cyclic nucleotide effects. Taken together, these results suggest that RNA 

interference is a promising approach to defining the function of highly homologous 

receptors that cannot be distinguished through conventional phannacologic approaches. 
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Introduction : 

Somatostatin (SRIF) is an important modulator of cellular physiology. exhibiting 

a wide spectrum of biological functions such as inhibiting cellular excitability, 

proliferation. endocrine and exocrine secretion, as well as possessing immunomodulatory 

properties. Cellular mechanisms that are induced by SRIF include inhibition of adenylyl 

cyclase, modulation of Kt and Ca+ channels, and protein dephosphorylation (Puente et 

al., 2001). SRIF is transcribed from a single gene as a 116 amino acid precursor, 

preprosomatostatin (Gillies, 1997). Two distinct forms ofSRIF are derived from the 

SRIFMprepropeptide, SRIFM14 and SRIFM28, which differ in amino acid composition and 

cellular origin. SRIF is widely distributed throughout the human body, however, SRIFM 

28 is predominately found in the gastrointestinal tract, while SRIFM14 is localized to the 

nervous system (R.eisine et al., 1997). 

The biological effects ofSRIF are mediated through its specific binding to a 

highly homologous family of G protein-coupled receptors that are designated sst--sst, 

(Hoyer et al., 1995). SRIF receptors couple to heterotrimeric guanine nucleotide binding 

proteins (G proteins) that are predominately inhibitory Gi and G
0 

proteins (Law et al., 

1991). All somatostatin receptors bind SRIFM14 with high affinity and serve to reduce 

cellular responsiveness by inhibiting cAMP production, regulating ionic conductances 

and controlling protein phosphorylation states (Pfeiffer et al., 2000). 

Of the five currently identified SRIF receptors only one exists as a splice-variant. 

Interestingly, the sst2 receptor exists as two splice-variants, sst2A and sstie, which are 

cleaved from the carboxyl terminus of the same mRNA transcript (Vanetti ct al., 1992). 

In rodents, there appears to be greater expression of the sstZA receptor in comparison to 

the sst:m (Sarrct ct al., 1998). The SRIF splice-variants (sst2A and sst28) as well as the 
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five SRIF-receptor subtypes (sstr-ssts], exhibit a broad and overlapping tissue 

distribution, (Bred.er et al., 1992) making for the assignment of functional responses to an 

individual SRIF receptor subtype extremely difficult. 

Recent approaches used to study SRIF receptor subtypes include the development 

of subtype-selective, non-peptidyl SRIF agonists (Rohrer et al., t 998). This 

pharmacological technique relies on the high affinity and selectivity of the synthetic 

agonists for given receptor subtypes. With high affinity interactions that demonstrate a 

high degree of specificity, biological responses can be attributed to individual receptor 

subtypes within a mixed population ofhomologous receptors. The availability of highly 

selective non-peptidyl agonists for each of the SRIF-receptors has greatly facilitated the 

study of subtype-selective coupling of SRJF receptors and the physiological 

consequences of receptor function (Rohrer et al., 1998; Pannar et al., 1999; Strowski et 

al., 2000; Blake, 2001; Cervia et al., 2002; Strowski et al., 2002; Cervia et al., 2003). 

However, this technique currently lacks the ability required to delineate between receptor 

subtype splice-variants when the receptor regions are not involved in ligand binding. 

An alternate approach used in the study of SRIF receptor subtypes is genetic, 

requiring the generation of knock-out organisms that lack the gene for the receptor of 

interest (Zhang et al., 1997; Strowsk.i et al, 2003). By genetically inactivating the gene of 

interest, the remaining phenotypic consequences can be monitored. Although this 

method is capable of distinguishing between receptor subtypes, it is expensive, time­ 

consuming and lacks the ability to delineate between receptor subtype splice-variants, as 

they are transcribed from the same gene. 
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Recently, a powerful technique termed double-stranded RNA interference 

(RNAi) has been developed in mammalian cells that enables for the study of highly 

homologous proteins, including receptor splice-variants. RNAi has been shown to be 

remarkably effective at suppressing specific gene expression in Caenorhabditis elegans, 

Dropsophila mealanogasler, Trypanosoma brucci, and plants by a pathway involving 

sequence-specific posttranscriptional gene silencing (Sharp, 2002). It has also been 

demonstrated that RNAi functions in cultured mammalian neurons, where introduction of 

low concentrations of dsRNA into rat hippocampus and forebrain cultures can be 

effective in suppressing endogenous and heterologous genes (Krichevsky et al., 2002). 

Numerous genes have been successfully knocked-down in mammalian somatic and 

embryonic cell lines as well, including HeLa, HEK293, and Pl9 (Harborth et al., 2002). 

A detailed understanding of RN Ai mechanisms remains unclear. However, there is 

evidence that suggests that dsRNAs are cleaved by ribonuclease III into 21-22 nucleotide 

RNA duplexes termed small interfering-RN As or siRNAs (Zanmore et al., 2000). These 

molecules, containing 2 to 3 nt 3' overhanging ends, a 5' phosphate, and 3' hydroxyl 

termini (Elbashir et al., 200 l ), have been shown to assemble with a multi-component 

enzymatic complex referred to as the RNA-induced silencing complex, RISC (Hammond 

et al., 2000). The single-stranded antisense siRNAs, when paired with RJSC, serve to 

guide the enzyme to target mRNA transcripts for cleavage (Martinez et al., 2002). It is in 

this manner that RNAi holds great promise for exploring the functional significance of 

receptor splice-variants, where it can be used to selectively target and degrade 

complimentary mRNA sequences. 

5 



Establislring a reliable methodology for studying SRIF receptor subtype splice­ 

variants is critical to understanding the role of these proteins in the cell. In the present 

study we use RNAi to examine the functional significance of SRIF receptor splice­ 

variants in the AtT-20 cell model. AtT-20 cells functionally co-express sst2A, 2B, sst3, but 

do not appear to express sstj 1,4 (Strowski et al., 2002; Cervia et al., 2003). Through the 

ability ofRNAi to selectively inhibit sstzA mRNA and therefore receptor expression, we 

determine the function of the sst2A receptor by correlating inhibition of receptor 

expression with loss of function. The effects of RNAi on the production of intracellular 

cyclic nucleotides such as cAMP were examined as SRIF receptor subtypes have been 

shown to inhibit cAMP accumulation (Strowski et al., 2002). Our results indicate that 

inhibition of sst2A expression in RN Ai treated cells results in a corresponding supression 

ofsstzA receptor protein production, as well as a loss in the ability of the sst2A receptor to 

inhibit forskolin-stimulated cAMP production. These findings suggest that the sstzA 

receptor splice-variant serves to modulate intracellular cyclic nucleotide production, and 

provide evidence that RNAi is a powerful gene-silencing tool capable of distinguishing 

between co-expressed receptor subtype splice-variants. 
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Materials and Methods : 

Materials: 

The AtT-20 cell line used in this study was a gift from Dr Terry Reisine (Los 

Angeles, CA) and cell culture dishes and flasks were purchased from Coming (Corning, 

NY). Cell culture, western blotting. and protein gel reagents were purchased from 

Invitrogen Life Teclmologies (Carlsbad, CA). Western blotting detection reagents were 

acquired from Amersham (Piscataway, NJ). Blue sensitive X-ray film was purchased 

from Denville Scientific (Metuchen, NJ) and was developed using an automatic Futura 

2000E X-ray film processor received from Fischer Industries (Geneva, IL). All RNAi 

reagents were obtained from Gene Therapy Systems, Inc. (San Diego, CA). SRIF-14 was 

purchased from Peninsula Labs (Belmont, CA) while the non-peptidyl sst2A-selective 

analog L-779,976 was obtained from Merck and Co, Inc. (Rahway, NJ). The cAMP 

radioimmunoassay kits (RIAs) were purchased from Amersham (Piscataway, NJ) and the 

results were quantified with the Wallac Wizard 1740 Automatic gamma scintillation 

counter from Wallac Inc. (Gaithersburg, MD). 

Cell Culture : 

AtT-20 cells were cultured in Dulbecco's modified Eagle's medium, DMEM, 

(with GlutaMAXrn, high glucose, llOmg/L sodium pyruvate and pyridoxine-HCL, Cat. 

No. 10569-010) containing 100 U m1-
1 of penicillin and 100 µg m1"1 streptomycin and 10 

% fetal calf serum in 5 % C(h at 37°C. Cell monolayers were grown in T75-cm2 flasks 

and passaged when the monolayers achieved 70 % confluence. Cells were passaged by 

washing with 5.0 ml of phosphate buffered saline (PBS) (without CaCI and MgCl, Cat. 

No. 14190-136) incubating with 0.5 ml trypsin/EDTA (with 5.0 g trypsin, 2.0 g EDTA- 
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Na and 8.5 g NaCIIL, Cat. No. 15400-054) and 5.0 ml PBS for 3 min, and resuspended in 

5.0 ml ofDMEM. Cell suspensions were transferred at a 1:10 dilution to new T75-crn2 

flasks and incubated at 37° C in a humidified abnosphere of 5% CC}z, 95% air. 

RNA Inte,ference Studies : 

AtT-20 cells were subcultured in 24-well plates to achieve 60-70 % confluence 

prior to RNAi experiments. The media was then aspirated and cells were washed twice 

with 1.0 ml of the reduced serum medium, Opti-MEM, (with GlutaMAX™, HEPES 

buffer and 2,400 mg/L sodium bicarbonate, Cat. No. 51985-034). The RNA interference 

reagents were prepared by first placing dsRNA into a 90°C heating block for l min 

followed by a 37' C water bath for 30 min. The GeneSilencer™ dsRNA Transfection 

Reagent was prepared in three stages: (1) GcneSilencer™ (GTS) reagent was diluted 

with 25 µl ofOpti-MEM for a final volume of3.5 µYwell. (2) The dsRNA solution was 

prepared by mixing 1.0-10.0 µg of dsRNA, 10.0 µl of dsRNA-Dilutent and 15.0 µI of 

Opti-MEM per well, followed by a 5 min incubation at room temperature. Final 

concentrations of dsRNA ranged from 0.3 -3.0 µM/well. (3) The diluted 

GeneSilencer™ (GTS) reagent from (1) was added to the dsRNA solution from (2) and 

incubated an additional 5 min at room temperature to allow for the fonnation of 

dsRNA/lipid complexes. Various amounts of the complexed GTS/dsRNA-solution were 

mixed with 200 µl of Opti-MEM, added to the corresponding wells, and incubated at 37' 

C for 48 hours. Following incubation, cells were placed in a fluorescent plate reader and 

intracellular fluorescence was recorded using a Cytofluor 4000 fluorescence plate reader 

(Excitation= 485 nm, emission= 530 nm). Cells were then washed twice in 1.0 mVwell 
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PBS (containing CaCl and MgCl), mixed with 1.0 ml ofOpti-MEM/well and 

fluorescence was measured a second time. The recorded results were analyzed using 

GrapPad Prism 3.0 (Blake, 2001). 

Western Blotting and Immunodetection : 

AtT-20 cells were cultured in 24-well plates, subjected to RNAi and subsequently 

analyzed by western blotting. Growth medium was aspirated and cells were lysed with 

(IX) NuPage™ Sample Buffer. Protein samples were collected and stored at -20° C. 

Prior to loading, protein samples were allowed to thaw at room temperature, sonicated, 

and placed in a 70° C heating block for 10 min. Samples were loaded at 15.0 µI/well and 

electrophoriesed on 10% Bis-Tris Gels for 2 hours. Samples were transferred from the 

gel to PVDF membranes for 1 hour, and immersed in 5 % non-fat dried milk solution, on 

a shaker, for 45 min to block non-specific binding. Membranes were rinsed in TBST 

(with 20 mM Tris-HCL, 150 mM NaCl and 0.5 ml Tween 20) and incubated overnight in 

a diluted (1 :1,000 in TBST) rabbit polyclonal anti-sst2A (R2-88-B6) antibody. 

Membranes were washed 4 times at 15 min intervals in TBST and bound primary 

antibody was detected with a diluted (1 :2,000 in TBST) horseradish anti-rabbit secondary 

antibody during a 45 min incubation. The membranes were incubated at room 

temperature for 5 min with a 40: l ratio of chemiluminescence reagent (3.0 ml solution A, 

75.0 µl solution B), dried, and placed protein side up into an X-ray fibn cassette. Films 

were exposed for l , 5 and 10 min intervals, developed with an automatic X-ray film 

processor, and the results were analyzed with the Scion Software version of NIH Image. 
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cAMP Accumulation Studies : 

AtT-20 cell monolayers were subcultured in 24-well plates to 70 % confluence 

and exposed to dsRNA as previously described. Cells were incubated in growth rnediwn 

plus 0.5 mM isobutylmethylxanthine (IBMX) for 30 min at 37" C. To stimulate 

intracellular cAMP accumulation, the culture medium was removed and replaced with 

medium with or without 10 µM forskolin plus somatostatin analogs (SRIF-14, L- 

779,976), and transferred to 37° C for 10 minutes. The reaction was terminated upon 

aspiration of experimental conditions, cells were lysed and cAMP levels were stabilized 

with addition of0.5 ml/well of l N HCL. Plates were stored at-20° C until cAMP 

accwnulation was determined by radioimmwtoassay (Amersham). Data obtained was 

analyzed by nonlinear regression analysis with GrapPad Prism 3.0 (GraphPad Software, 

Inc., San Diego, CA). 

A. 

Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp 

I 
Cys-Ser-Thr-Phe-Thr-Lys 

' B. /'-(). 
,>---'---.-"" 

H I 
/N [r.11 

0/"0-J;) 
}-NH 

0 

Figu.re 1 : A. Amino acid sequence ofSRIF-14. B. Structure of the sstiA-selective 
analog L-779,976 (Rohrer et al., 1998). 
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Results: 

Determination of dsRNA uptake 

We have used the gene-silencing tool, RNA interference, to inhibit the expression 

of the sst2A receptor to determine if there was a corresponding loss of receptor function. 

In order for RNAi to be effective, dsRNA must be synthesized and packaged into 

liposomes that can then fuse with cellular membranes to release their oligonucleotide 

contents within the cell. In order to determine if uptake of dsRNA occurs and whether it 

is saturable, an AtT-20 cell population was subjected to various concentrations of 

synthetic oligonucleotide incorporated with a fluorescien isothiocynate marker (FITC) 

and GTS reagent, the cationic lipid solution that forms dsRNA vesicular complexes. 

According to the data obtained (Figure 1 ), dsRNA concentrations of 0.5 - 1.5 µM /well 

produced maximal uptake prior to saturation with l.5 - 3.0 µM/well concentrations. 

Conversely, when AtT-20 cells were subjected to various volumes ofGTS reagent, with a 

constant 2.5 µg/well of dsRNA, a linear uptake of oligonucleotide occurred with I 0.0 

µI/well GTS reagent samples producing maximal fluorescence and no marked saturation 

(Figure 2). This data set the guidelines for dsRNAi experiments, where 2.5 µg of dsRNA 

and 10.0 µl of GTS reagent per well were used in these studies. 
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Figure 1 : Fluorescent-labeled synthetic oligonucleotide uptake study with AtT-20 
cells. Cell monolayers at 70 % confluence were treated with various concentrations of 
dsRNA while fluorescence was measured and quantified with a Cytofluor 4000 
fluorescent plate reader. The results were analyzed using Graphpad Prism 3.0. 
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Figure 2 : Fluorescent-labeled synthetic oligonucleotide uptake study with increasing 
volumes ofGTS reagent. AtT-20 cell monolayers were treated with increasing volumes 
of GTS reagent and a constant 2.5 µg of dsRNA/well. Fluorescence was measured with a 
Cytofluor 4000 fluorescence plate reader and the results were analyzed using Graphpad 
Prism 3.0. 
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RNA Interference Inhibits sst1,1. Receptor Expression 

After determining the concentrations of dsRNA and volumes ofGTS reagent that 

yielded optimal uptake of oligonucleotide, (Fig 1 and Fig 2) the ability of RNAi to inhibit 

sstzA receptor protein expression was detennined. Cell lysates were prepared and 

proteins separated by SOS-PAGE. Western Blot analysis was perfonned to detect for 

changes in the expression of the sst2A receptor on AtT-20 cell populations that were 

exposed to various volumes of GTS reagent with a constant 2.5 µg of dsRNA. 

' .. 

..... 

Figure 3 : Autoradiographic results showing inhibition of sst2A protein upon treabnent 
with 10.0 µI/well of GTS reagent and 2.5 µglwell of dsRNA. AtT-20 cell monolayers 
were cultured in serum free basal medium and incubated in the absence or presence of 
varying volumes ofGTS reagent. Cell lysates were resolved on Nu-Page 10 % Bis-Tris 
gels, electroblotted and incubated with an anti-sst2A (R.2-88-86) primary antibody. 
Immunoreactivity was detected using a horseradish anti-rabbit secondary antibody in 

conjunction with chemiluminescence. Lanes 1 and 2 represent controls not treated with 
dsRNA. Lane 3 and Lane 4 represent individual populations that were treated with 5.0 
and 10.0 µI/well ofGTS reagent respectively. 

A comparison between lanes 3 and 4 (Figure 3), showed a significant decrease in 

expression of sst2A protein levels following treatment with a greater concentration ofGTS 

reagent as compared to control samples (Figure 3, lanes I /2). However, 5.0 µI/well GTS 

reagent samples (lane 3, Fig 3), did not result in loss of receptor expression. This 

suggests that increased levels of GTS reagent corresponded with an increase in dsRNA 

uptake, resulting in greater inhibition of the sst2A receptor. These findings correlate with 

our previous results which indicated that 10.0 µVwell of GTS reagent produced maximal 

uptake of synthetic oligonucleotide and furthennore, provided evidence Utat RNAi was 

an effective gene-silencing tool. 
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Determination ofsstu Receptor Function with RN.Ai 

We next examined sst2A receptor function. It is important to establish whether 

the reduction in sst?A receptor protein that we observed correlated with a decrease in 

SRIF activity in the AtT-20 cell. In untreated cells, SRIF-14 demonstrated a dose- 

dependent decrease in forskolin-stimulated cAMP production (Figure 4). 

.. 
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:I 
u 

300 • 
o- 
c •  
.2  .!!  
� o  

200 o E  

"• 
"i! - 
3  100 c 
0 

0 

0 

Forskolin 10·11 10• 

Concentration of SRIF-14 (M) 

Figure 4 : SRIF-14 inhibition of forskolin-stimulated cAMP accwnulation in AtT-20 
cells. Intracellular cAMP accwnulation was measured in the presence of 10 µM forskolin 
plus SRIF-14 at various molar concentrations. Cell monolayers were incubated with 0.5 
mM IBMX for 30 mins and were treated with experimental conditions for 10 mins. 
Following cell lysis, intracellular cAMP levels were measured by radioimmunoassay and 
the data was analyzed using Graphpad Prism 3.0 (Blake, 2001). 

To establish whether the dose-dependent inhibition of forskolin stimulated cAMP 

accumulation was due to activation of sst2A, AtT-20 cells were treated with RNAi prior to 

the experiment. Forskolin-stimulated cAMP accwnulation was then perfonned in the 

presence or absence of SRIF-14 or the sstu selective ligand, L-779,976. A cAMP 

radioinununoassay was then performed on cell supematants and the ability of SRIF-14 or 

L-779,976 to decrease forskolin-stimulated cAMP accumulation was assessed. As shown 

in Figure 5, the ability offorskolin-stimulated cAMP levels to decrease upon addition of 
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an sst2A selective-ligand (L-779,976) was markedly attenuated in RNAi pre-treated cells. 

When compared to the SRIF-14 controls, L-779,976 inhibition was reduced. L-779,976 

is known to be a potent inhibitor offorskolin-stimulated cAMP accumulation in AtT-20 

cells with a potency and maximal inhibition of cyclic nucleotide levels that is equivalent 

to SRIF-14 (Strowski et al., 2002). Toe reduction in L-779,976 function appears to 

correlate with the reduction of sstzA expression observed in the western blot analysis 

(Figure 3) suggesting that RNAi inhibited both receptor expression and attenuated 

receptor function. Furthermore, this data supports the notion that sst2A plays a key role in 

the AtT-20 cell's ability to regulate intracellular nucleotide levels. 

0. 

� � 
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RNAi 
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Figure S : RNAi prevents sst2A receptor inhibition of forskolin-stimulated cAMP 
accumulation in the AtT-20 cellular model. Cell monolayers in the absence or presence 
of2.5 µg dsRNA were incubated with 0.5 mM IBMX for 30 mins and then treated with 
10 µM forskolin ± SRIF-14 or L-779,976 for 10 mins. Following cell lysis, intracellular 
cAMP levels were measured by radioimmunoassay and the data was analyzed using 
Graphpad. Statistical significance (*p < 0.05) was determined, relative to forskolin 
control, by GraphPad Prism 3.0 (Blake, 2001). 

15 



Discussion : 

The present study demonstrated that the sst2A receptor regulates intracellular 

cyclic nucleotide production in the murine corticotropic model. This is an important 

finding since the functional significance of receptor subtype slice-variants are difficult to 

characterize given the current pharmacological methods implemented in their study. 

Here it was shown that a relatively new gene-silencing technique, RNA interference, was 

effective in selectively targeting and inhibiting the sst2A receptor, allowing for the 

functional consequences of the ablation of the receptor to be determined. RN Ai was 

shown to inhibit sstu, receptor expression as seen in western blot analysis when 2.5 µg of 

dsRNA was diluted in 10.0 µVwell ofGTS reagent. Upon addition ofSRIF-14 there was 

a dose-dependent decrease in forskolin-stimulated cAMP production that was inhibited 

by pre-treatment with dsRNA. 

In choosing both optimal concentrations and volumes of dsRNA and GTS 

reagent required for RNAi experiments, it was important to achieve maximal uptake of 

oligonucleotide while minimizing any non-specific effects. Although the mechanism of 

RNAi is highly specific, excessive amounts of dsRNA could possibly alter the 

physiological homeostasis of the cell, producing inaccurate results or lead to non-specific 

effects (Parrish, et al., 2001). For this reason, concentrations of both dsRNA and GTS 

reagent were chosen prior to saturation of intracellular fluorescence. Our initial studies 

indicated that 2.5 µglwell of dsRNA and I 0.0 µI/well of GTS reagent yielded optimal 

internal fluorescence that corresponded to maximal uptake ofFITC-labeled 

oligonucleotide (Figure 1, 2). 
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The exact genetic mechanisms by which RNA interference inhibits the 

expression of certain proteins is unknown, although there is evidence that suggests 

multiple molecular hypotheses. One such mechanism relies on the enzymatic 

degradation of dsRNA into smaller, single-stranded fragments, that serve to guide multi­ 

component enzymatic complexes to complementary mRNA for ablation (Hammond et 

al., 2000). Interestingly, RNA interference has been shown to inhibit the expression of 

genes at the post-transcriptional level in mammalian cells (Krichevsky et al., 2002), 

however, since this study was one of the first to utilize this technique to inhibit the 

expression of splice-variants, it was necessary to evaluate the ability ofRNAi to inhibit 

the expression of the sst2A receptor. Western blot analysis using subtype-selective 

antisera, performed on AtT-20 cells treated with various amounts of GTS reagent, 

confirmed the ability ofRNAi to inhibit the expression of the sst2A receptor. Figure 3 

clearly depicts a significant decrease in the percent-expression of the sst2A receptor that 

resulted from treatment with l 0.0 µ[/well of GTS reagent and 2.5 µg/well of dsRNA. 

These findings are significant in that they illustrate the effective use ofRNAi as a 

pharmacological tool that can distinguish between receptor subtype splice-variants. 

In answering the experimental hypothesis, we attempted to determine if 

inhibition of sstiA receptor expression with RN Ai, correlated with any cellular 

consequences that could be attributed as the function of the sstiA receptor. Since there is 

evidence that suggests SRIF-receptor subtypes as inhibitors of cell proliferation, 

excitability and secretion (Puente et al., 2001), we focused our study on an important 

regulator of signal transduction cascades, cAMP, and the effects that the sst1A receptor 

has on the production of this cyclic nucleotide. As illustrated in Figure 4, SRIF-14 

17 



decreases forskolin-stimulatcd cAMP accumulation in the AtT-20 cellular model. SRIF- 

14 is known to have a high degree of affinity for the sst2A receptor and has been shown to 

have similar effects on forskolin-stimulated cAMP production as that of the sst2A 

selective-agonist, L-779,976 (Strowski et al., 2002). In order to determine if this cellular 

response was mediated by the sst2A receptor, we examined the ability of AtT·20 cell 

populations that were pre-treated with dsRNA to inhibit fcrskolin-stimulated cAMP 

production. The cells that were pre-treated with dsRNA and hence exhibited decreased 

expression of the sst2A receptor, showed a significant decrease in their ability to inhibit 

forskolin-stimulated cAMP production upon the addition of an sst2A-specific agonist 

(Figure 5). From these findings we can conclude that the sst?A receptor serves to 

decrease cyclic nucleotide production in the AtT-20 cellular model. Overall, these data 

indicate that RNAi was a vital tool in understanding the functional significance of 

receptor subtype splice-variants, where through it's use we determined that the sst2A 

receptor functions to regulate the production of intracellular cyclic nucleotides in murine 

corticotrophs. 
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Conclusion : 

The results presented here demonstrate that the sstlA receptor splice-variant 

appears to regulate the production of intracellular cyclic nucleotide levels in the AtT-20 

cellular model. Through the use of dsRNA interference, SRIF-14 and the sst2A-selective 

agonist, L-779,976, we were able to characterize the function of the sstiA receptor in 

inhibiting forskolin-stimulated cAMP production. 

Our results show that 0.5 - 1.5 µM of dsRNA diluted in 10.0 µI/well of GTS 

reagent are required to yield maximal uptake of synthetic oligonucleotide. In addition, 

dsRNA interference proved to be an effective post-transcriptional gene-silencing tool in 

inhibiting sst2A receptor expression as seen in the ablation of sst2A protein levels in 

western blot analysis. Furthennore, dsRNAi revealed loss of sstlA receptor function 

corresponding to inhibition of receptor expression, suggesting that the function of the 

sst2A receptor in the AtT-20 cell line is to inhibit forskolin-stimulated cAMP production. 

In conclusion, the present study determined the functional significance of the sstlA 

receptor subtype splice-variant through the use of a receptor subtype-selective technique, 

RNA interference. The ability to silence genes in this manner allows for furthering the 

understanding of intracellular pathways involved in cell signaling and may have future 

therapeutic implications. 
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