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ABSTRACT 

Lipopolysaccharide (LPS) is the primary component of the outer membrane of 

Gram-negative bacteria and is responsible for the majority of inflammatory effects of 

infections from Gram-negative bacteria. To gain better understanding of the effects that 

postnatal age has on the inflammatory response, pups were randomly assigned to be 

treated with 250 µg/kg of LPS or saline at postnatal day (P) 1, P21, and P70. Two hours 

post stimulation, the pups were sacrificed and their livers were harvested for total RN A 

extraction. Relative mRNA levels of inflammatory genes and �-actin were determined 

using RT-PCR analysis with appropriate rat sense and antisense primers. The specific 

inflammatory mediators examined were toll-like receptor-4 (TLR4), cluster of 

differentiation 14 (CD14), myeloid differentiation factor 88 (Myd88), cytokines 

including interleukin (IL )-1 �. IL-6, and tumor necrosis factor (TNF)-a, and chemokines 

including macrophage inflammatory protein (MIP)-1 �, MIP-2, and monocyte 

chemotactic protein (MCP)-1. We found that the LPS-induced mRNA expression of the 

cytokines and chemokines examined appear to be increased as compared to the control 

pups. Furthermore, we showed that an activation of cytokines and chemokines in the liver 

exhibited age-dependency in pups treated with LPS at Pl, P21, and P70. The pattern 

shows an increase in relative mRNA expression of cytokines and chemokines as 

development progresses. Furthermore, we compared the kinetics of cytokine and 

chemokine induction in PI and P2 l animals. We found that that there was a delayed 

cytokine and chemokine induction at PI as compared to P2 l pups. Our data suggest that 

the hepatic innate immunity undergo significant development during early postnatal 
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development, and the delayed inflammatory response in Pl animals may contribute to 

increased susceptibility of neonatal animals to infections. 
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INTRODUCTION 

Lipopolysaccharide (LPS) is a glycolipid and the primary component of the outer 

membrane of Gram-negative bacteria. It is a prime target for recognition by the innate 

immune system and is responsible for the majority of inflammatory effects of infections 

from Gram-negative bacteria (Bell et al., 2002). As an endotoxin, it is a potent immune 

activator which can lead to fatal septic shock syndrome if the inflammatory response is 

amplified and uncontrolled (Park et al., 2009). LPS is recognized by the innate immune 

system because it has a typical pathogen-associated molecular pattern that is recognized 

by toll-like receptor-4 (TLR4) on many cells including monocytes and macrophages 

(Dantzer, 2004). 

LPS is first presented by the LPS-binding protein (LBP) to CD 14, a 

glycosylphosphatidyl inositol (GPI)-anchored monocyte differentiation antigen (Bosshart 

et al., 2007). After binding to CD14, LPS is delivered to TLR-4 which marks the start of 

the intracellular signaling cascade (Takeda et al., 2004). This signaling cascade includes 

adaptor proteins such as myeloid differentiation factor 88 (Myd88) and the 

phosphorylation and activation of mitogen-activated protein kinases (MAPKs) and 

ultimately an increased production of inflammatory cytokines & chemokines (Wang et al., 

2006). 

The MAPK involved in LPS signal transduction in particular is p42/44 MAPK, 

also known as ERK 1/2. The phosphorylation of this kinase leads to the production of 

cytokines responsible for pro-inflammatory immune responses, involving namely 

interleukin (IL)-113, IL-6, and tumor necrosis factor (TNF)-u (Ning et al., 2007). 
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Cytokines include both pro-inflammatory and anti-inflammatory cytokines. The 

pro-inflammatory cytokines play an important role in initiating the pro-inflammatory 

response. IL-I� and TNF-a are of primary importance in the initiation and propagation 

of the acute phase of the inflammatory response. IL-I� enables an organism to respond 

quickly to infection by creating a cascade of reactions that leads to inflammation (Bird et. 

al., 2002). Studies have shown that a minute amount of IL-I� in vivo can induce fever, 

hypotension, and the release of adrenocorticotrophic hormone (Li et. al., 2008). 

TNF-a is responsible for a wide range of signaling events within cells, leading to 

necrosis or apoptosis (Idriss et al., 2000). After LPS stimulation, it has been reported that 

TNF-a is the first cytokine normally detected at the site of inflammation where as other 

cytokines are detected later (Luheshi et al., 1997). This cytokine is responsible for many 

of the systemic effects of infection including septic shock and associated with chronic 

infections in humans (Dinarello, 2000). 

The IL-6-type cytokines include a family of cytokines which consist of IL-6, IL- 

1 1 ,  LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, 

cardiotrophin-1 and cardiotrophin-like cytokine. IL-6 is a pleiotropic cytokine engaged in 

the regulation of inflammatory and inununologic responses (Kishimoto et al., 1997). It is 

secreted by a broad range of cells including B cells, T cells, fibroblasts, monocytes, and 

endothelial cells (Benveniste, 1997). IL-6 facilitates the up-regulation ofIL-1�, TNF-a, 

and other acute phase reactants (Chiang et al., 1994) and has both pro- and anti­ 

inflammatory properties which make IL-6 a major contributors in acute-phase and 

immune responses in organisms (Heinrich et al., 2003). In the liver, IL-6 activated 
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multiple signaling pathways result in the induction of genes involved in growth, 

heptocyte-specific metabolic functions, and the acute phase response (Campbell et al., 

2001). 

Chemokines are chemotactic cytokines known to be critical mediators of 

inflammatory cell trafficking into sites of injury, modulation of tissue injury, 

inflammation, and repair (Miihlbauer et al., 2003 ). Chemokines guide the migration and 

activation of leukocytes at sites of inflammation or tissue injury (Kim et. al., 2003). 

Chemokines of interest in this study included macrophage inflammatory protein (MIP)- 

1�, MIP-2, and monocyte chemotactic protein (MCP)-1. As a member of the CC­ 

chemokine subfamily, MIP-1 � is an important mediator of inflammatory reactions with 

chemotactic and activating properties for several types of leukocytes. Specifically, MIP- 

1 � regulates T-cell trafficking by selectively recruiting activated Thi subset of cells as 

well as participate in the recruitment and activation ofNK cells, monocytes, macrophages, 

granulocytes, and dendritic cells (Rapisarda et al, 2002). 

Similarly, MIP-2 plays an important role in the chemotactic activity of neutrophils. 

The primary functions of neutrophils are to recognize, phagocytose, and kill invading 

microorganisms to protect the host from infections (Cross et al., 2005). It has been noted 

that an unregulated production ofMIP-2 is associated with inflammatory diseases such as 

arthritis, glomerulonephritis, and sepsis (Kwon et al., 2003). 

MCP-1 is produced spontaneously by monocytes and believed to play a 

significant role in several inflammatory processes such as immunopathological disorders 

and normal immune response againt microorganisms (Vestergaard et al., 1997). MCP-1 
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acts as a potent T-lymphocyte and monocyte chemoattractant (Leone et al., 1999) and is 

involved in monocyte trafficking to sites of infection across endothelial and epithelial 

cells (Maus et al., 2002). 

Emerging evidence suggests that the liver is an important part of the body's innate 

immune response to pathogens and plays a critical role in the processing and clearance of 

LPS. The liver is composed of hepatocytes that carry out the metabolic and detoxifying 

needs of the body. Seventy percent of liver cells are composed ofhepatocytes (Gao et al., 

2008); the remaining cells are made up of nonparenchymal cells, namely Kupffer cells. 

There are additional nonparenchymal cells which include sinusoidal endothelial cells, 

stellate cells, and lymphocytes (Malik et al., 2002). 

Hepatocytes play a key role in controlling systemic innate immunity. During an 

acute phase inflammatory response, pro-inflammatory cytokines can stimulate 

hepatocytes to produce high levels of complements and pattern-recognition receptors 

(Gao et al. 2008). Kupffer cells are macrophages and are the first to respond to the 

presence of LPS. Pro-inflammatory mediators, such as cytokines and chemokines, 

released by Kupffer cells may in turn propagate signals to hepatocytes (Tukov et al., 

2006). 

There have been studies reporting that age plays a factor on the response of the 

immune system. Reported studies have shown that there is a diminished induction of IL­ 

l J3, IL-6, and TNF-u in cord blood as compared to adult peripheral blood monocytes 

(Forster-Wald! et al, 2005). Additionally, the polymorphonuclear leukocytes (PMNs) 

from preterm infants have been reported to exhibit a much reduced antibacterial activity 
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than those from adult (Henneke et al., 2003). More recently, studies from our laboratory 

showed that LPS-induced phosphorylation ofp42/44 MAPK in the liver is age-dependent 

with p42/44 MAPK being significantly activated at postnatal (P) day 21 and P70 but not 

at Pl compared to their saline controls (Surriga, 2009). 

The present study was designed to analyze the effects of age on LPS-induced 

hepatic inflammatory response. For this study, rat pups at the ages of Pl day, P21, and 

P70 were chosen. Pl is newborn, only being one day out of the mother's womb. P21 rat 

pups are at the age in which the pups are weaned off from the mother and P70 is the age 

in which the rat is considered a young adult. The rats were treated with LPS or saline at 

Pl, P21, and P70. At two hours following stimulation, liver tissues were collected and 

processed to examine the relative mRNA levels of cytokines and chemokines, namely IL­ 

i �, IL-6, TNF-a, and MIP-1�, MIP-2, MCP-1 respectively, as well as the upstream 

inflammatory mediators such as TLR4, CD 14, and Myd88. 
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MATERIALS & METHODS 

Animals 

Adult male and female Sprague-Dawley rats were purchased from Harlan Inc. 

(Indianapolis, IN). For at least one week prior to the experiment, the rats were held in a 

temperature- and humidity- controlled animal facility with a 12-hour light/dark cycle. 

The rats were fed a standard rat diet and water ad libitum. With the approval of the 

Institutional Animal Care and Use Committee (IACUC) at Seton Hall University, the 

animal studies were conducted. 

For mating purposes, 1-3 female rats (200-300 g) were housed overnight with one 

male rat (250-300 g). Each of the female rats that were exposed to the male rats was 

visually inspected for the presence of a vaginal plug. The female rats were moved to a 

separate cage in the aforementioned conditions once the vaginal plug was noted. The 

presence of a vaginal plug was designated as gestational day 0, and the day the rat pups 

were born was designated as postnatal day 0. 

For age-dependency studies, the pups were kept in the above-mentioned 

conditions. The pups were allowed to mature until postnatal days (P) 1, 21, or 70. Each 

was randomly assigned to receive one intraperitoneal (i.p.) injection of saline or 250 

µglkg LPS (Salmonella enteric serovar Typhimuriuml Sigma, St. Louis, MO). The pups 

were sacrificed two hours post saline or LPS stimulation and their liver tissues were 

collected and stored at -80°C for total RNA extraction. 

For time-course studies, the pups were allowed to mature in above-mentioned 

conditions until either P 1 or P21 after birth. At designated age, rat pups were treated via 
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i.p. injection with 250 µg!kg LPS for O hour (h), 0.5 h, 1 h, 2 h, 6 h, and 24 h (four pups 

per group). Following treatment, the pups were then sacrificed and their liver tissues were 

harvested and stored at -80°C for total RNA extraction. 

Total RNA extraction 

Total RNA was isolated from individual dissected liver tissues collected from 

each treated animal using TRizol reagent (Invitrogen, Grand Island, NY). The liver 

tissues were homogenized with lOOOµL TRizol reagent using a power homogenizer 

(Polytron). 200 µL of chloroform was added for each 1000 µL of TRizol reagent, and the 

samples were then mixed and centrifuged at 14,000g at 4 °C for 15 minutes. After 

centrifugation and rinsing with 70% ethanol, the total RNA samples were dissolved in 

50µL RNase-free water and stored at -80°C. 

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

cDNA was synthesized from 2µg of total RNA using oligo ( dT)12.18 primer and 

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase (Invitrogen, Grand 

Island, NY). After cDNA synthesis, PCR amplification was carried out using appropriate 

sense and antisense primers for rat �-actin, TNF-a, IL-I�, IL-6, MIP-1�, MIP-2, MCP-1, 

TLR-4, CD14, and Myd88 (synthesized by Fisher Scientific, Springfield, NJ). The final 

volume was 50µL consisting of 2µL of cDNA, Ix PCR buffer, 0.2µL of each sense and 

antisense primer, 0.2mM dNTPs, and I unit of Taq DNA polymerase. The sense and 

antisense primers for rat �-actin were: 5'-AGC-CAT-GTA-CGT-AGC-CAT-CC-3' and 
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5'- CTC-TCA-GCT-GTG-GTG-GTG-AA-3' respectively; the sense and antisense 

primers for rat TNF-a were: 5'-GAG-GTC-AAC-CTG-CCC-AAG-TA-3' and 5'-CGT­ 

GTG-TTT-CTG-AGC-ATC-G-3', respectively; the sense and antisense primers for rat 

IL-Ip were: 5'-AGT-CTG-CAC-AGT-TCC-CCA-AC-3' and 5'-AGA-CCT-GAC-TTG­ 

GCA-GAG-GA-3', respectively; the sense and antisense primers for rat IL-6 were: 5'­ 

TGT-GCA-ATG-GCA-ATT-CTG-AT-3' and 5' -AAC-GGA-ACT-CCA-GAA-GAC­ 

CA-3 ', respectively; the sense and antisense primers for rat MIP-lp were: 5'-CTC-TCT­ 

CCT-CCT-GCT-TGT-GG-3' and 5'-CAC-AGA-TTT-GCC-TGC-CTT-TT-3', 

respectively; the sense and antisense primers for rat MIP-2 were: 5'-CTG-GAT-CGT- 

ACC-TGA-TGT-GCC-3' and 5'-CAG-TGT-GGA-GGT-GGT-GTA-GTC-3', 

respectively; the sense and antisense primers for rat MCP-1 were: 5'-TGC-TGC-TAC­ 

TCA-TTC-ACT-GGC-AA-3' and 5'-GTT-TCT-GAT-CTC-ACT-TGG-TTC-TGG-3', 

respectively; the sense and antisense primers for rat TLR-4 were: 5'-TGC-TCA-GAC­ 

ATG-GCA-GTT-TC-3' and 5'-TCA-AGG-CTT-TTC-CAT-CCA-AC-3', respectively; the 

sense and antisense primers for rat CD14 were: 5'-GTG-CTC-CTG-CCC-AGT-GAA­ 

AGA-3' and 5'-GAT-CTG-TCT-GAC-AAC-CCT-GAG-T-3', respectively; and the sense 

and antisense primers for rat Myd88 were: 5' -AGA-ACA-GAC-AGA-CTA-TCG-GCT-3' 

and 5'-CGG-CGA-CAC-CTT-TTC-TCA-AT-3, respectively (Lasala and Zhou, 2007, 

Surriga et al., 2009, Chen et al., 2009, and Velayudham et al., 2006). The optimum 

number of cycles was 30 cycles for TLR-4, 29 cycles for MIP-1 p and MIP-2, 28 cycles 

for IL-6 and MCP-1, 27 cycles for IL-Ip, 26 cycles for TNF-a and CD 14, 25 cycles for 

Myd88, and 21 cycles for P-actin. 
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For the amplification of rat MIP-2, the PCR reaction was heated to 94°C for 5 

minutes, and cycled through a 30 second denaturation step at 94°C, a 30 second annealing 

step at 58°, and a 30 second extension step at 72°C (29 cycles for MIP-2) followed by a 7 

minute extension step at 72°C. The annealing temperatures were as followed: MIP-2 at 

58°C; TNF-a, IL-I�, IL-6, MIP-1�, MCP-1, TLR-4 and Myd88 at 57"; and �-actin at 

56°C. Through electrophoresis, the PCR products were then separated on a 2.0% agarose 

gel. Using a UVP GelDocit™ imaging system (UVP, Upland, CA), the gel images were 

documented and digitized using Vision Works™ LS software (UVP, Upland, CA). The 

relative intensities for the genes amplified were normalized to �-actin in the same sample. 

Expression levels of cytokine and chemokine mRNA were determined using RT-PCR 

analysis. 

Immunohistochemistry 

The embedded liver tissues were cut into 10-µm sections on a microtome (Leitz) 

and transferred onto slides. Once on the slides, the liver sections were then dewaxed and 

rehydrated through xylenes (5 min, three times), 100% ethanol (5 min, twice), 95% 

ethanol (5 min), 70% ethanol (5 min), 25% ethanol (5 min), and TBS (5 min). After 

rehydration, the liver sections were heated for 3 min in 10 mM sodium citrate (pH 6.0) in 

a microwave and cooled down for 20 minutes at room temperature. The liver sections 

were then rinsed with TBS and incubated with 0.3% H202 in methanol for 30 minutes at 

room temperature. Subsequently, the sections were blocked with 5% normal host serum 

in TBS containing 0.2% Triton X-100, incubated with antibodies for phosphorylated 
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p42/44 MAPK (Cell Signaling Technologies) overnight at 4°C, and detected with the 

ECTASTAIN Elite ABC Kit (Vector Laboratories, Budingame, CA) following 

manufacturer's instructions (Surriga, 2009). 

Statistical analysis 

The intensity of the RT-PCR data was normalized to �-actin of the same sample 

using Vision Works™ LS software (UVP, Upland, CA). All data were presented as 

means± SE. A two-way analysis of variance (ANOVA) for repeated measures was used 

to analyze the data. Results with p < 0.05 were considered statistically significant. 
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RESULTS 

LPS-induced activation of cytokines in Pl, P21, and P70 rat liver 

To examine how age effects the LPS-induced activation of cytokines, pups were 

randomly assigned to receive one i.p. injection of250 µg/kg ofLPS or saline at postnatal 

day (P) I, P21, and P70. Two hours post stimulation, the pups were sacrificed and their 

livers were harvested for total RNA extraction. Expression levels of cytokine mRNA 

were determined using RT-PCR analysis with appropriate sense and anti-sense primers. 

Analysis of the expression levels showed an increase ofTNF-a and IL-Ill in LPS­ 

treated pups at Pl, P21, and P70 as compared to their saline controls (Figs. I and 2). 

Additionally, there appears to be an increase in the expression of these cytokines at P21 

and P70 as compared to Pl following LPS stimulation (Figs. I and 2). The expression 

level ofIL-6 was increased in P2 l and P70 pups following LPS stimulation, however, the 

mRNA expression ofIL-6 was hardly detectable by RT-PCR (Fig. 3). 
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Figure 1 .  Representative RT-PCR ofTNF-u expression in Pl, P21, and P70 animals at 2 
h following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 2. Representative RT-PCR ofIL-lP expression in Pl, P21, and P70 animals at 2 h 
following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 3. Representative RT-PCR ofIL-6 expression in Pl, P21, and P70 animals at 2 h 
following stimulation of250 µg/kg LPS (L) or saline (S). 
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LPS-induced activation of chemokines in Pl, P21, and P70 rat liver 

Analysis of the expression levels showed an increase of MIP-1 �, MIP-2, and 

MCP-1 in LPS-treated pups at Pl, P21, and P70 as compared to their saline controls (Figs. 

4, 5, and 6). Additionally, there appears to be an increase in the expression ofMIP-1� and 

MCP-1 at P21 and P70 as compared to Pl following LPS stimulation (Figs. 4 and 6). 
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Figure 4. Representative RT-PCR ofMIP-1� expression in Pl, P21, and P70 animals at 2 
h following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 5. Representative RT-PCR ofMIP-2 expression in Pl, P21, and P70 animals at 2 h 
following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 6. Representative RT-PCR ofMCP-1 expression in Pl, P21, and P70 animals at 2 
h following stimulation of250 µg/kg LPS (L) or saline (S). 
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LPS-induced activation o/TLR4, CDl4, and Myd88 in Pl, P21, and P70 rat liver 

We also examined the mRNA expression ofTLR4, CD14, and Myd88 using RT­ 

PCR analysis with appropriate sense and anti-sense primers. 

TLR4 mRNA expression seemed to be decreased in LPS-treated pups at P21 and 

P70 as compared to their saline controls. Additionally the basal level ofTLR4 expression 

appeared to be increased at P21 and P70 liver compared to Pl liver (Fig. 7). The 

expression levels showed an increase in LPS-treated pups at the ages studied for CD 14. 

Within the LPS-treated pups, there appears to be an increase in the level of expression in 

P21 and P70 pups as compared to Pl pups after LPS stimulation (Fig. 8). The expression 

levels ofMyd88 increase in the LPS treated pups at Pl, P21, and P70 compared to their 

saline controls. Additionally, the expression levels of Myd88 appear to be increased at 

P21 and P70 as compared to Pl after LPS stimulation (Fig. 9). 
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Figure 7. Representative RT-PCR ofTLR4 expression in Pl, P21, and P70 animals at 2 h 
following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 8. Representative RT-PCR ofCD14 expression in Pl,  P21, and P70 animals at 2 h 
following stimulation of250 µg/kg LPS (L) or saline (S). 
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Figure 9. Representative RT-PCR ofMyd88 expression in Pl, P21, and P70 animals at 2 
h following stimulation of250 µg/kg LPS (L) or saline (S). 
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Effects of LPS stimulation on MAPK phosphorylation in PI, P21, and P70 rat liver 

Immunohistochemistry was used to investigate the localization of MAPK 

immunoreactivity. Although quantitation of immunohistochemical signal in each 

individual cell was not performed, the number of cells immmunoreactive to p-p42/44 in 

LPS-treated pups were increased compared to those pups that were saline treated, which 

is consistent with the cytokine and chemokine data. Furthermore, there was an increase in 

the number of cells immunoreactive to p-p42/44 in P21 and P70 as compared to Pl 

amongst the LPS-treated pups (Figures lOA, I OB, lOC, !OD, I OE, and !OF). 
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Figure IO. Representative images ofp-p42/44 MAPK immunohistochemistry. Pups were 
treated for 2 hours with either 250 µ/kg LPS or saline at Pl,  P21, and P70. (A) Pl Saline. 
(B) P21 Saline. (C) P70 Saline. (D) Pl LPS. (E) P21 LPS. (F) P70 LPS, Bar: 50 µm 
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Time-course of cytokine induction in PI rats 

Rat pups were treated at PI with one dose of 250 µg/kg of LPS via i.p. injection 

for O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h to assess the time-course of relative mRNA 

levels in Pl rat liver. The rats were then sacrificed and their liver tissues harvested for 

preparation of total RNA. RT-PCR was conducted with appropriate sense and anti-sense 

primers to evaluate the levels of relative mRNA expression in inflammatory genes. 

IL-I� mRNA expression was increased at 0.5 h, elevated at 2 h and 6 h, and 

slightly decreased at 24 h following LPS stimulation (Fig. 1 1  ). The relative mRNA level 

ofIL-6 increased and peaked at 6 h, and returned to basal levels at 24 h (Fig. 12). 
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Figure I I .  A  time-course representative RT-PCR of IL-113 expression of LPS-induced 
(250µg/k:g) PI pups at O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h. 
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Figure 12. A time-course representative RT-PCR of IL-6 expression of LPS-induced 
(250µg/kg) PI pups at O hour (h), 0.5 h, 1 h, 2 h, 6 h, and 24 h. 
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Time-course of chemokine induction in PI rats 

Rat pups were treated in the aforementioned conditions. MIP-1� mRNA 

expression was significantly increased and peaked at 6 h and remained elevated at 24 h 

following LPS stimulation (Fig. 13). The relative mRNA level ofMCP-1 showed similar 

results with an increase and peak at 6 hand remained elevated at 24 h (Fig. 14). 
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Figure 13. A time-course representative RT-PCR of MIP-1 J3 expression of LPS-induced 
(250µg/kg) Pl pups at O hour (h), 0.5 h, 1 h, 2 h, 6 h, and 24 h. 
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Figure 14. A time-course representative RT-PCR ofMCP-1 expression ofLPS-induced 
(250µg/kg) Pl pups at O hour (h), 0.5 h, 1 h, 2 h, 6 h, and 24 h. 
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Time-course of cytokine induction in P2 I rats 

Rat pups were treated at P21 with one dose of250 µg/kg ofLPS via i.p. injection 

for O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h to assess the time-course of relative mRNA 

levels in P21 rat liver. The rats were then sacrificed and their liver tissues harvested for 

preparation of total RNA. RT-PCR was conducted with appropriate sense and anti-sense 

primers to evaluate the levels of relative mRNA expression of inflammatory genes. 

TNF-a mRNA expression was significantly increased at 0.5 h, peaked at I h, 

remained elevated at 2 h, and returned to basal levels 6 h following LPS stimulation (Figs. 

15A and 15B). The relative mRNA level ofIL-113 showed a significant increase at 0.5 h, 

significantly elevated at I h and 2 h, remained elevated at 6 h, and returned to basal levels 

at 24 h (Figs. 16A and 16B). IL-6 mRNA expression was significantly increased at I h, 

peaked at 2 h, and returned to basal levels at 6 h following LPS stimulation (Figs. 17 A 

and 17B). 
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Figure 15. (A) Representative RT-PCR ofTNF-a expression ofLPS-induced (250µg/kg) 
P21 pups at O hour (h), 0.5 h, 1 h, 2 h, 6 h, and 24 h. (B) Quantitation of TNF-a 
normalized to �-actin. * represent significant difference as compared to basal levels. 
Values are means± SE, p < 0.05. 
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Figure 16. (A) Representative RT-PCR of IL-IP expression of LPS-induced (250µg/kg) 
P21 pups at O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h. (B) Quantitation of TNF-a 
normalized to P-actin. * represent significant difference as compared to basal levels. 
Values are means± SE, p < 0.05. 
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Figure 17. (A) Representative RT-PCR of IL-6 expression of LPS-induced(250µg/kg) 
P2 l pups at O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h. (B) Quantitation of TNF-a 
normalized to �-actin. * represent significant difference as compared to basal levels. 
Values are means± SE, p < 0.05. 
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Time-course of chemokine induction in P2 J rats 

Rat pups were treated in the aforementioned conditions. MIP-1� mRNA 

expression was increased at 0.5 h, elevated at 1 h and 2 h, remained elevated at 6 h, and 

returned to basal levels at 24 h following LPS stimulation (Fig. 18). The relative mRNA 

level of MCP-1 appear to be increased at 0.5 h, elevated at I h, 2 h, and 6 h, and returned 

to basal levels at 24 h (Fig. 19). 
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Figure 18. A time-course representative RT-PCR ofMIP-1� expression ofLPS-induced 
(250µg/kg) P21 pups at O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h. 
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Figure 19. A time-course representative RT-PCR of MCP-1 expression of LPS-induced 
(250µg/kg) P21 pups at O hour (h), 0.5 h, I h, 2 h, 6 h, and 24 h. 
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DISCUSSION 

This study investigated the effects of age on LPS-induced hepatic inflammatory 

response. The primary findings of this investigation showed that an activation of 

cytokines and chemokines in the liver exhibited age-dependency in pups treated with LPS 

at postnatal (P) day 1, P21, and P70. The pattern shows an increase in relative mRNA 

expression of cytokines and chemokines as development progresses. 

Among the LPS stimulated pups, there was a significant mcrease of relative 

mRNA levels in P70 pups as compared to LPS stimulated Pl pups for the cytokines and 

chemokines studied. There was also a significant increase of relative mRNA levels 

among the LPS-treated of the P2 l pups as compared to PI pups for the cytokines and 

chemokines studied using RT-PCR analysis. 

We also found that there was a decrease in the expression ofTLR4 in LPS-treated 

among the P2 l and P70 pups as compared to their saline controls. In contrast, the relative 

mRNA level of CD 14 was increased in LPS-treated animals as compared to their saline 

controls. In addition, amongst the LPS stimulated pups, there was an increase in the 

expression ofCD14 from Pl to P70. 

Consistently, phosphorylation of p42/44 MAPK in the liver has been reported to 

be increased in P2 l and P70 animals as compared to their saline controls (Surriga, 2009), 

and confirmed in our immunohistochemical studies. 

Similar studies have reported that human neonates are highly susceptible to 

infections by bacteria, fungi, and viruses. As a result, infection remains the single most 

common killer in early life (Marodi, 2006). It has been duly noted that deficiencies of 
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innate immunity contribute to the impaired neonatal host defense. With an impaired host 

defense, it has been reported that polymorphonuclear leukocytes from preterm infants 

exhibit a much reduced antibacterial activity than those from adult (Henneke et al., 2003). 

This results in an inhibited immune response, similar to what was reported with Pl pups 

in this present study. Additional studies have shown there is a diminished induction of 

IL-I 13, IL-6, and TNF-a in cord blood as compared to adult peripheral blood monocytes 

(Forster-Wald! et al, 2005). Likewise, due to the lack of cytokines present in Pl pups, 

there was a significantly lower expression of mRNA levels of cytokines as compared to 

the older P2 l and P70 pups. 

In conclusion, we found that there was a delayed cytokine and chemokine 

induction at P 1 as compared to P2 l and P70 pups. This data suggest that the hepatic 

innate immunity undergo significant development during early postnatal development, 

and the delayed inflammatory response in Pl animals may contribute to increased 

susceptibility of neonatal animals to bacterial infections. It would be worthwhile to 

undergo additional studies to further investigate specific ages in which there is a 

definitive increase in cytokine and chemokine induction. 
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