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Abstract 

Judgments regarding the strength of a cause to produce an outcome do not always follow 

predictions of normative causal reasoning models (Kao & Wasserman, 1993). In the case of the 

outcome density effect, individuals’ ratings of the strength of a putative cause tend to be greater 

when the number of observed outcomes is high than when it is low (e.g. Jenkins & Ward, 1965). 

In the current experiment, I investigated the outcome density effect as a possible heuristic. 

Participants made causal judgments based on information about the prevalence of headaches in a 

sample of individuals who did or did not receive a mineral. To manipulate cognitive load, stimuli 

differed in sample size (n = 24 or 72) and presentation format (scrambled or organized 

information). Although each stimulus depicted a non-contingent relationship, there were 

pervasive outcome density effects for causal judgments in each condition. However, the 

probability of the outcome had no effect on estimates of causal power, suggesting the importance 

of how causal questions are worded. Manipulations of cognitive load did not influence the 

magnitude of the outcome density effect for causal judgments or affect causal power estimates. 

Thus, the outcome density effect does not appear to be used as a heuristic in tasks that vary in 

cognitive demand, at least as manipulated by sample size and the organization of information.   
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Introduction 

The ability to accurately assess the relationship between a cause and an outcome enables 

individuals to respond appropriately to events in the world. However, individuals’ judgments 

regarding the strength of a causal relationship do not always coincide with normative measures 

of covariation and causation. Instead, judgments sometimes reflect either less sophisticated 

information integration strategies or the use of heuristics (e.g., Fielder, 2009; Fleig, Meiser, 

Ettlin, & Rummel, 2017; Kao & Wasserman, 1993).  

Heuristics are simple strategies or shortcuts that can be used to make judgments or 

decisions in cases of uncertainty (see Tversky & Kahneman, 1974), potentially leading to non-

normative outcomes. For example, the availability heuristic describes instances when individuals 

make inferences about the frequencies of an event based on easily or quickly recallable (i.e., 

available) instances of the event. Heuristics can be beneficial in cognitively demanding 

situations, such as when an individual must complete a task in a limited amount of time. 

Alternatively, the use of heuristics can be disadvantageous, such as when a doctor incorrectly 

makes a diagnosis based on easily recallable instances of a disease despite its true rate of 

occurrence.  

One example of non-normative reasoning in causal inference is the outcome density 

effect. The outcome density effect is observed when individuals increase their judgments of 

causal strength as the number of outcomes increases, regardless of the actual contingency 

between the putative cause and outcome. To illustrate, imagine a gardener wants to determine the 

extent to which two brands of fertilizer generate plant growth. He applies Fertilizer A to 6 of 12 

plants in one plot and Fertilizer B to 6 of 12 plants in another. In plot A, 4 of 6 fertilized and 4 of 

6 unfertilized plants grow. In plot B, 2 of 6 fertilized and 2 of 6 unfertilized plants grow. An 
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example of an outcome density effect would be if the gardener assumes Fertilizer A to be 

stronger because he observed a larger amount of plant growth, although neither fertilizer had an 

actual influence on plant growth. 

In one of the first demonstrations of the outcome density effect, participants were 

instructed to illuminate a light by choosing to press or not press one of two buttons on each of 60 

trials (Jenkins & Ward, 1965, Experiment 1). Participants then judged the degree to which their 

actions caused the light to turn on using a rating scale from 0 (no control) to 100 (total control). 

In three conditions, participants’ actions had no influence on the outcome (i.e., the light turning 

on), but their ratings of control increased as the probability of the outcome increased from 0.13 

to 0.50 to 0.80 (see Figure 1).  

 
Figure 1. Data from Jenkins and Ward (1965, Experiment 1). When ΔP was held constant at 0, 
participants’ ratings of control over the outcome increased as outcome density (OD) increased, 
despite no existing relationship between the cause and the outcome. Error bars indicate SD. 

 Normative models of causal judgment (e.g., Allan, 1980; Cheng, 1997) cannot fully 

account for outcome density effects, such as the one observed by Jenkins and Ward (1965), in 
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which there was no relationship between the cause and the outcome. The goal of this paper is to 

investigate whether outcome density may be a heuristic that people use when under cognitive 

load. Dual process models of cognition suggest that individuals may employ one of two separate 

systems – or sets of cognitive processes – for reasoning and decision making (e.g., Sloman, 

1996). System 1 is automatic and effortless, resulting in quick, intuitive responses, whereas 

System 2 involves slower and more effortful reasoning (Kahneman & Frederick, 2001). Thus, 

heuristics are a component of system 1, which may be overridden by system 2 reasoning. If 

cognitive demand is too great or there is insufficient time, however, system 2 may fail and 

individuals will rely upon heuristics (e.g., Finucane, Alhakami, Slovic, & Johnson, 2000). 

Because the use of heuristics increases with increases in cognitive load, we may be able to test 

the hypothesis that the outcome density effect is a heuristic by observing whether outcome 

density effects increase under increasing cognitive load. The remainder of this introduction will 

review normative models of causal judgment, review evidence for the prevalence of outcome 

density effects in causal judgment, and discuss manipulations that may affect the cognitive 

demands of the causal learning task.  

In Jenkins and Ward’s (1965) early demonstration of outcome density, they used a free-

operant trial-by-trial design, in which participants were to determine whether their action (i.e., 

pressing a button) determined the presence or absence of the outcome. However, outcome 

density effects in free-operant designs may be influenced by alternative variables such as the 

temporal contiguity between the participant’s action and the outcome (see Vallée-Tourangeau, 

Murphy, & Baker, 2005). In contrast, many studies on causal learning utilize either a passive 

trial-by-trial design in which the cause-outcome contingencies are revealed over a series of trials, 

or a summary design, in which the frequency information is supplied to participants in a 
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summary format. Because of possible temporal contiguity effects in free-operant designs, this 

paper focuses on discrete trial-by-trial and summarized designs.  

Normative Models of Covariation and Causal Judgment 

 If the outcome density effect does not reflect normative causal judgments, then what 

constitutes normative causal inference? Most normative theories of causal inference rely on an 

estimate of contingency, that is, the relationship between the cause and the outcome. Some 

normative models, such as the ΔP rule (Allan, 1980) and the power PC model (Cheng, 1997), are 

rule-based and posit that individuals make causal judgments by calculating statistical 

probabilities from the evidence. Other normative models, such as the Rescorla-Wagner (1972) 

model, are associative and propose that causal judgments are based on learning associations 

between the putative cause and the outcome. 

ΔP Rule. According to the ΔP rule, normative causal judgments are based on the 

probability of an outcome in the presence versus the absence of a putative cause (Allan, 1980). In 

causal learning tasks regarding binary events, participants typically make causal judgments after 

they observe the presence or absence of an outcome in the presence or absence of a target cause. 

This information can be organized into a contingency table so that each cell totals the number of 

observations for each cause-outcome combination (see Figure 2). 

 Outcome  
Cause Present Absent  
Present a b p(o|c) = !

!!!
 

Absent c d p(o|~c) = !
!!!

 

   p(o) = !!!
!!!!!!!

 

Figure 2. Sample contingency table displaying the four possible combinations of a cause and 
outcome. Equations on the right refer to the probability of the outcome occurring in the presence 
of the cause, p(o|c), the probability of the outcome occurring in the absence of the cause, p(o|~c), 
and the overall probability of the outcome, p(o).  
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 The value of ΔP is equal to the difference between the probability of the outcome 

occurring in the presence, p(o|c), and the absence, p(o|~c), of the cause (Equation 1). When a 

causal relationship is generative, ΔP is positive, suggesting the cause produces the outcome. 

Recalling the previous gardener example, ΔP is positive and the fertilizer generates plant growth 

if the probability of bloomed plants is greater in the presence than the absence of the fertilizer. 

When a causal relationship is preventive, ΔP is negative, suggesting the cause inhibits the 

outcome. If the probability of bloomed plants is larger in the fertilizer’s absence than its 

presence, ΔP is negative and the fertilizer prevents plants from blooming. When a relationship is 

non-contingent, ΔP is equal to zero, suggesting the cause has no effect on the outcome. Thus, if 

the probability of bloomed plants is the same in the presence and the absence of the fertilizer, ΔP 

is equal to zero and the fertilizer has no effect on plant growth. 

 ΔP = p(o|c) - p(o|~c) (1) 

Power PC Model. The ΔP rule suggests that individuals base causal judgments on the 

extent to which a relationship exists between the cause and the outcome. A correlation between 

two events, however, does not necessarily imply causation, as alternative causes may be 

responsible for an effect. The Power PC model (Cheng, 1997) is a newer, more theoretically 

complex model that proposes a number of boundary conditions and assumptions that individuals 

make when judging causation from covariation. Of most importance here, Cheng theorized that 

individuals scale their causal judgments with the base rate of the outcome, p(o|~c).  For 

generative causes, causal power is calculated as: 

 𝑞 =  !!
!!!(!|~!)

 (2) 

As p(o|~c) increases, the value of the denominator, 1 – p(o|~c), decreases. Thus, the 

generative power of the cause, q, will increase as the base rate approaches 1. When p(o|~c) is 
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equal to 1, the value of the denominator is equal to 0 and q is undefined. To use the previous 

example, if plants always grow in the absence of a fertilizer (i.e., p(o|~c) = 1), a gardener cannot 

make assumptions regarding the fertilizer’s influence on plant growth. 

In preventive relationships, however, p(o|~c) is the critical scalar (see Equation 3). For a 

preventive cause with constant ΔP, ratings of the strength of the target cause increase as p(o|~c) 

approaches 0, but is undefined at 0 (e.g., a gardener cannot make any judgments about the 

strength of a weed-killer in a plot without weeds).  

 𝑝 =  !!!
!(!|~!)

 (3) 

Both the generative (Equation 2) and preventive (Equation 3) equations can be used to 

model the strength of non-contingent relationships. If ΔP is equal to zero, the numerators of p 

and q will be equal to zero, so that causal strength is also zero. Therefore, for non-contingent 

relations, both ΔP and the power PC model predict causal estimates to be zero. 

Rescorla-Wagner Model (RWM). The Rescorla-Wagner (1972) model, initially designed 

to describe animal learning in classical conditioning, models how animals learn associations 

between two stimuli over time. When adapted to explain human causal reasoning, the RWM 

predicts causal judgments to change with new information over a series of trials. Individuals’ 

causal judgments are described as the change in associative strength (ΔV) between the putative 

cause (C) and an outcome (E) on the current trial (i), or ΔVC-Ei  (see Equation 4). 

     ΔVC-Ei = α  β  (λ – ΣVi) (4) 

During a trial, individuals observe the presence or absence of a cause in the presence or 

absence of an outcome, which alters the associative strength between the two. ΣVi represents the 

sum of these associative strengths in that trial (i). The rate of learning for the associative 

strengths is modulated by two parameters for the outcome (α) and the cause (β). As new 
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information is introduced, the value of ΣVi becomes closer to the learning asymptote (λ), the 

maximum value of the association. Over time, the learner will update previous beliefs in the 

associative strengths with new information, so that the RWM is an error-correcting algorithm. 

When there is only one potential cause, as described above, the asymptotic result of the RWM is 

mathematically equal to ΔP and the model predicts causal judgments to reflect the contingency 

of the cause-outcome relationship (see Chapman & Robbins, 1990). 

 Outcome Density Effect and Models of Causal Judgment. Despite evidence that the ΔP 

rule (e.g., Lober & Shanks, 2000) and the power PC model (e.g., Buehner & Cheng, 1997) can 

accurately predict causal judgments in many circumstances, neither model fully accounts for the 

outcome density effect. When ΔP is held constant, the ΔP rule does not predict changes in causal 

judgments based on increased outcome density as p(o|c) and p(o|~c) will change proportionately 

for generative, preventive, and non-contingent relationships (Equation 1).  

 Power PC predicts outcome density effects in contingent, but not in non-contingent 

relations. For non-contingent relations, ΔP is equal to zero, and the numerator of the power PC 

equations for both generative (Equation 2) and preventive (Equation 3) relations will be equal to 

zero. Thus, p(o) does not influence predicted causal power estimates. The model does predict, 

however, that p(o) will affect causal judgments for generative and preventive relationships. If 

p(o) increases, p(o|~c) will also increase, causing the denominator of the power PC model to 

decrease for generative (see Equation 2) and increase for preventive (see Equation 3) 

relationships. As the denominator decreases, power PC predicts that judgments of causal strength 

will increase for generative and decrease for preventive relationships. 

 In contrast to the predictions of the power PC and ΔP models, the RWM suggests that 

outcome density effects may occur early on in learning for non-contingent causes, depending on 
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the sequence of the training trials (Musca, Vadillo, Blanco, & Matute, 2010). As individuals 

review more trials, the sum of associative strengths on the current trial (ΣVi) will approach the 

learning asymptote (λ), which is the maximum learned strength of the association. That is, this 

model predicts that outcome density effects in pre-asymptotic causal judgments will dissipate as 

individuals update their beliefs with new information and ΣVi approaches λ. The RWM, 

however, only makes predictions for trial-by-trial learning – the design utilized in most studies of 

outcome density. In the current experiment, I implemented a summarized design. Therefore, the 

RWM does not apply.  

Demonstrations of the Outcome Density Effect 

 No models of causal learning can fully account for the outcome density effect. For 

example, ΔP does not predict a role of outcome density in causal judgments and the power PC 

model does not predict outcome density effects for non-contingent relationships. Still, outcome 

density effects are well documented in the literature for non-contingent, generative, and 

preventive relationships.   

 In causal learning tasks, participants judge the extent to which a relationship exists 

between the cause and the outcome at the end of a series of trials or after reviewing the summary 

information either using a bi-directional scale from -100 (the cause always prevents the outcome) 

to +100 (the cause always produces the outcome) or a unidirectional scale from 0 (no 

relationship) to +100 (cause always has an effect on the outcome).  

Outcome Density Effects for Non-contingent Relationships. The majority of outcome 

density research looks at the effect when ΔP is equal to zero. As can be seen across studies in 

Table 1, causal judgments for non-contingent relationships tend to increase as the probability of 

the outcome, p(o), increases (e.g., Allan, Siegel, & Tangen, 2005).  
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Table 1 

Outcome Density Effects for Non-contingent Relationships 
Study Presentatio

n Type 
Sample 

Size 
Findings 

Allan et al. 
(2005) 

TBT 60 OD effect. Causal ratings increased as p(o) increased 
from low (.2) to medium (.5) to high (.8) when rated 
after 20, 40, and 60 trials. 

Allan et al. 
(2008, Exp. 3) 

TBT 60 OD effect. More likely to classify a relationship as 
‘strong’ as opposed to ‘weak’ in the high (.7) than in 
the low (.3) outcome density condition.  

Blanco et al. 
(2013, Exp. 1) 

TBT 100 OD effect. Causal ratings were greater in the high (.8) 
than in the low (.2) condition. 

Buehner & 
Cheng (1997, 
Exp. 1a, 1b) 

TBT 16 OD effect. As the probability of the outcome increased, 
causal ratings decreased in the preventive scenario (1a) 
and increased in the generative (1b) scenario.   

Buehner & 
Cheng (1997, 
Exp. 2a, 2b) 

Summary 
(Pie Chart) 

100 OD effect. There was a negative and positive linear 
trend as p(o) increased for relationships framed as 
preventive (2a) and generative (2b), respectively. 
Further analysis suggests that the effect is driven by an 
OD effect at extreme values of p(o), specifically when 
p(o) = 0.  

Buehner et al. 
(2003, Exp. 1) 

TBT 16 OD effect. In a between-subjects design, researchers 
saw a positive and a negative linear OD trend for 
causal ratings of participants in the generative scenario 
and participants in the preventive scenario, 
respectively.  

Buehner et al. 
(2003, Exp. 2) 

Summary 
(Countable 

Images) 

72 No OD effect. Researchers specifically asked if the 
cause influenced the outcome and 47/50 participants 
said the cause had no effect.   

Buehner et al. 
(2003, Exp. 3)  

TBT 24 OD effect. Although most (20/31) participants said 
there was no relationship, there was an OD effect for 
those who believed there was a relationship. 

Crump et al. 
(2007) 

TBT 60 OD effect. Causal judgments were greater in the high 
(.8) than in the low (.2) condition. 

Musca et al. 
(2010) 

TBT 50 OD effect. Causal judgments were greater in the high 
(.8) than in the low (.2) condition.  

Perales & 
Shanks (2003, 
Exp. 2) 

TBT n/a1 OD effect. Causal judgments were greater in the high 
(.8) than in the low (.2) condition. 

Note. OD = outcome density effect. TBT = trial-by-trial design; Sample size = number of trials 
in a TBT design or total number of instances in a summary chart.  

																																																								
1 Participants studied as many trials as needed to make a causal judgment that was 100% reliable, 
for an average of 35.6 and 36.6 trials when p(o) = .2 and .8, respectively.  
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To walk through a typical study, Allan et al. (2005) gave participants information about 

the rate of bacteria survival (outcome) when a chemical (cause) was or was not added to the 

bacteria. In each trial, participants learned whether the cause was present or absent and then 

made a prediction about whether the bacteria would survive (outcome present) or not (outcome 

absent). After 60 trials, they rated the effect of the chemical on a scale of -100 (negative effect on 

survival) to +100 (positive effect on survival). As seen in Figure 3, causal judgments increased 

when the probability of bacteria survival was high even though the relationship was non-

contingent.  

 

Figure 3. Estimated mean causal ratings for non-contingent causes with low, medium, or high 
levels of outcome density (OD) after reviewing 60 trials (causal ratings were approximated based 
on the data presented in Figure 3 of Allan et al., 2005). Causal judgments increased as the 
probability of the outcome, p(o), increased. 

Although participants’ causal judgments revealed an outcome density effect, p(o) had no 

effect on participants’ predictive judgments. Using participants’ predictions, Allan et al. (2005) 

calculated p(o|c) and p(o|~c) to determine an ‘observed’ value of ΔP. These observed ΔP values 

closely reflected normative expectations set by the ΔP rule (i.e., a judgment of zero), suggesting 
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that while participants’ final causal estimates were influenced by the probability of the outcome, 

they were able to detect the actual contingency. Therefore, the outcome density effect cannot 

simply be explained by an incorrect perception of cause-outcome combinations. Although the 

outcome density effect for causal judgments is pervasive in studies of non-contingent 

relationships, it is incompatible with normative models of causal judgment and its nature is 

uncertain.  

Outcome Density Effects for Generative Relationships. In Allan et al.’s (2005) study, 

participants also made causal judgments about a generative relationship. As they found with non-

contingent relationships, mean causal judgments increased as p(o) increased when ΔP was equal 

to .467 (see Figure 4).  

 
Figure 4. Approximates of participants’ mean causal ratings after reviewing 60 trials (estimates 
based on Figure 3 in Allan et al., 2005). Mean causal ratings increased as the probability of the 
outcome, p(o), increased from low (.33) to medium (.50) to high (.67). 

Table 2 summarizes the studies investigating outcome density in generative relationships, 

in which causal judgments frequently increase as p(o) increases. Although several studies 
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document outcome density effects for generative relationships, the presence of an outcome 

density effect is not consistently supported at each value of ΔP (e.g., Buehner, Cheng, & 

Clifford, 2003). In addition, outcome density effects for generative relationships may be 

sensitive to presentation format (e.g., Wasserman, Elek, Chatlosh, & Baker, 1993), as will be 

discussed later in this paper.	

Table 2 

Outcome Density Effects for Generative Relationships 
Study Presentation 

Format 
Sample 

Size 
ΔP Findings 

Allan et al. (2005) TBT 60 .467 Mixed results. OD effect as p(o) 
increased from low (.333) to medium 
(.467) to high (.667). Found for causal 
judgments made after 40 and 60 but 
not 20 trials. 

Allan et al. (2008, 
Exp. 3) 

TBT 80 .1, .2, .3, 
.4, .5, .6 

OD effect. The probability that a 
participant would classify a 
relationship as “strong” as opposed to 
“weak” increased as p(o) increased. 

Buehner & Cheng 
(1997, Exp. 1b) 

TBT 16 .25, 
.5, .75 

 

Mixed results. Significant OD effect 
for ΔP = .25 and .50, approached 
significance for ΔP = .75 (p = .052). 

Buehner & Cheng 
(1997, Exp. 2b) 

Summary 
(Pie Chart) 

100 .25, .5, 
.75 

OD effect for each value of ΔP. 

Buehner et al. 
(2003, Exp. 1) 

TBT 16 .25, .5, 
.75 

Mixed results. OD effect for ΔP = .25 
and .5 but not .75.  

Buehner et al. 
(2003, Exp. 2) 

Summary 
(Countable 
Images) 

72 .5 OD effect as p(o) increased from low 
(.25) to medium (.58) to high (.75). 

Buehner et al. 
(2003, Exp. 3) 

TBT 24 .5 OD effect as p(o) increased from low 
(.25) to medium (.58) to high (.75). 

Crump et al. (2007) TBT 60 .467 OD effect as p(o) increased from .33 
to .67.  

Lober & Shanks 
(2000, Exp. 3) 

TBT 60 .4 OD effect as p(o) increased from .2 to 
.6 to .8. Evident OD effect each time 
participants gave a causal judgment 
(after viewing 20, 40, or 60 trials).  

Lober & Shanks 
(2000, Exp. 6) 

Summary 
(Pie Chart) 

100 .4 No OD effect. There was a nonlinear 
trend for causal ratings of p(o) = .2, 
.6, and .8. 

Note. OD = outcome density effect. TBT = trial-by-trial design; Sample size = number of trials 
in a TBT design or total number of instances in a summary chart.  
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 Outcome Density Effects for Preventive Relationships. In contrast to generative 

relationships, outcome density effects occur in preventive relationships when causal judgments 

become increasingly positive as p(o) increases. Strong preventive causes should inhibit the 

outcome; therefore, outcome density effects in preventive causes will be shown by decreases in 

preventive strength as the probability of the outcome increases.  

For example, in Buehner et al. (2003), participants rated the extent to which a medicine 

prevented headaches based on summarized information about the prevalence of headaches in a 

sample of 72 individuals, half of whom received the medicine. When ΔP was held constant at -

.5, causal judgments were increasingly negative (i.e., judged as increasingly more preventive) as 

the number of headaches decreased (see Figure 5).  

 

Figure 5. Participants’ mean causal ratings after reviewing summarized information about a 
preventive relationship of ΔP = -.5 (Buehner et al., 2002). The absolute value of participants’ 
ratings decreased and became increasingly less negative as p(o) increased, demonstrating an 
outcome density effect for preventive relations. 

 There is a considerable lack of research regarding the influence of p(o) for preventive 

causes while holding ΔP constant, but the few extant studies are summarized in Table 3. The 

results of these studies support the idea that the outcome density effects are not limited to 

generative or non-contingent relationships, but also occur for preventive causes. 

p(o) = .25 

p(o) = .42 

p(o) = .75 
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Table 3 

Outcome Density Effects for Preventive Relationships 
Study Presentation 

Format 
Sample 

Size 
|ΔP| Findings 

Buehner & Cheng 
(1997, Exp. 1a) 

TBT 16 .25, .5, .75 OD effect for each value of ΔP. 

Buehner & Cheng 
(1997, Exp. 2a) 

Summary 
(Pie Chart) 

100 .25, .5, .75 Mixed results. Causal ratings 
significantly decreased as p(o) 
increased for ΔP = .25 and .75 
but not ΔP = .5.  

Buehner et al. 
(2003, Exp. 1) 

TBT 16 .25, .5, .75 OD effect for each value of ΔP. 

Buehner et al. 
(2003, Exp. 2) 

Summary 
(Countable 
Images) 

72 .5 OD effect for each value of ΔP 
as p(o) increased from low (.25) 
to medium (.58) to high (.75).  

Buehner et al. 
(2003, Exp. 3) 

TBT 24 .5 OD effect for each value of ΔP 
as p(o) increased from low (.25) 
to medium (.58) to high (.75). 

Note. OD = outcome density. TBT = trial-by-trial design; Sample size = the number of trials in a 
TBT design or total number of instances in a summary chart. ΔP values refer to the absolute 
value of a negative (preventive) ΔP. An OD effect for a preventive relationship indicates that 
causal judgments decrease as p(o) increases.  
 

Outcome Density Effects in Other Dependent Measures. As previously described, 

causal judgments are sensitive to changes in outcome density for non-contingent, generative, and 

preventive causes. Other studies have demonstrated the pervasiveness of the outcome density 

effect using other dependent measures. For example, individuals are more likely to classify a 

non-contingent or generative relationship as “strong” as opposed to “weak” if the probability of 

the outcome is high than if it is low (Allan, Hannah, Crump, & Siegel, 2008). In another study, 

researchers found individuals’ actual behavior was sensitive to changes in outcome density 

(Matute, Steegen, & Vadillo, 2004). Participants were more likely to exhibit preparatory 

behavior during a video game when the probability of the outcome was high as opposed to 

moderate. This suggests that outcome density affects not only numerical causal judgments but 

also the overall perception of a relationship and how individuals use outcome density 

information to interact in the world. 
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Potential Manipulations for Influencing Cognitive Demand 

 Some normative models of causal learning, such as the power PC model (Cheng, 1997), 

account for outcome density effects in generative and preventive relationships. However, no 

model can account for outcome density effects when a causal relationship is non-contingent. 

Still, individuals are sensitive to changes in the probability of the outcome, as outcome density 

effects are pervasive in the literature. If normative models expect individuals to detect non-

contingent relationships as non-causal, then why do outcome density effects occur? The current 

experiment explores the possibility that individuals use outcome density as a heuristic during 

cognitively demanding causal learning tasks.  

Presentation Format. One way to manipulate cognitive demand is through the format for 

presenting the contingency information. In a trial-by-trial design, participants are shown one 

cause-outcome combination per trial. In a summarized design, the cause-outcome information is 

displayed simultaneously in a variety of possible formats (see Figure 6). For both trial-by-trial 

and summarized designs, the different cause-outcome combinations represent the four cells of 

the contingency table (see Figure 2).  
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A. Countable Images 
 

  

B. Simple Phrases 
7 of 12 individuals who received the mineral got a 

headache. 
5 of 12 individuals who received the mineral did not get a 

headache. 
4 of 12 individuals who did not receive the mineral got a 

headache. 
8 of 12 individuals who did not receive the mineral did not 

get a headache. 

C. Frequency Tree 

 

D. Pie Chart 

 

Figure 6. Four methods for organizing information in a summary design. 

Individuals may rely on different strategies to make causal judgments depending on the 

presentation format. In summarized designs, individuals appear to make causal judgments based 

on the ΔP rule, which assumes equal weighting of the contingency cells (Kao & Wasserman, 

1993; Ward & Jenkins, 1965). In trial-by-trial designs, however, individuals appear to implement 

less sophisticated strategies and place greater weight on different cells. Causal judgments in trial-

by-trial designs may reflect use of the cell A strategy, in which individuals rely more heavily on 

cell A (i.e., the frequency of the outcome in the presence of the cause; Kao & Wasserman, 1993). 

An alternative strategy is the confirming cases heuristic, in which individuals rely on cell A and 

cell D (i.e., the frequency of the outcome not occurring in the absence of the cause; Ward & 

Jenkins, 1965).  

Could increased use of the ΔP rule in summarized designs be due to the organization of 

information? As seen in Figure 6, summarized designs present cause-outcome information in a 

format that is similar to how the frequencies would be presented in a contingency table. 
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Therefore, the organization of information may make it easier to calculate and compare 

conditional probabilities. Ward and Jenkins (1965) actually used a contingency table to 

disseminate cause-outcome information to participants in the summarized format condition. In 

another condition, participants reviewed trial-by-trial information and then saw the same 

information in a summarized contingency table. Although participants in the summarized-only 

condition made causal judgments based on the ΔP rule, participants that saw both formats 

appeared to rely on the confirming cases heuristic, the same strategy implemented by participants 

who only saw trial-by-trial information.  

Trial-by-trial designs place a greater demand on working memory, as participants must 

keep track of the different cause-outcome combinations before making a final causal judgment. 

In the Ward and Jenkins (1965) study, participants who only saw trial-by-trial information and 

participants who saw both trial-by-trial and summarized information may have relied on the 

confirming cases heuristic because of the increased cognitive load. Participants in the 

summarized-only condition, however, may have more easily implemented the ΔP rule due to 

decreased cognitive demand and the organization of contingency information. 

Presentation format may also modulate the extent to which outcome density effects are 

observed. If trial-by-trial designs are more cognitively demanding, then individuals may rely on 

outcome density as a strategy to make causal judgments. In contrast, summarized designs may 

not elicit strong outcome density effects because the organization of information leads 

individuals to make normative judgments based on the ΔP rule. However, only three studies have 

specifically manipulated the probability of the outcome for constant values of ΔP using both 

trial-by-trial and summary designs (see Table 4).  
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Table 4 

Outcome Density Effects in Summary vs. Trial-by-Trial Designs 
Study ΔP Presentation 

Type 
Sample 
Size 

Findings 

Buehner & 
Cheng 
(1997) 

Generative TBT (Exp. 1b) 16 Mixed results. OD effect for ΔP = 
.25, .50. OD trend approached 
significance for ΔP = .75. 

  Summary (Pie 
Chart, Exp. 2b) 

100 Mixed results. OD effect for ΔP = 
.25, .75, but not ΔP = .50. 

 Preventive TBT (Exp. 1a) 16 OD effect for ΔP = -.25, -.50, -.75. 
  Summary (Pie 

Chart, Exp. 2a) 
100 OD effect for ΔP = - .25, -.50, -.75. 

 Non-
contingent 

TBT (Exp. 1) 16 OD effect. Causal ratings increased 
or decreased as p(o) increased for 
participants who saw the 
relationship framed as generative 
(Exp. 1b) or preventive (Exp. 1a), 
respectively.  

  Summary (Pie 
Chart, Exp. 2) 

100 OD effect. Causal ratings increased 
for participants who saw the 
relationship framed as generative 
(Exp. 2b); the trend seemed to be 
due to close-to-zero ratings for p(o) 
= 0 as ratings were not different for 
p(o) = .25, .50, and .75. Causal 
ratings decreased for participants 
who saw the relationship framed as 
preventive (Exp. 2a); the trend 
seemed to be due to close-to-zero 
ratings for p(o) = 1 as ratings were 
not different for p(o) = .25, .50, and 
.75.   

Buehner et 
al. (2003)  

Generative TBT (Exp. 1) 16 Mixed results. Observed OD effect 
for ΔP = .25 and .50, but not ΔP = 
.75. 

  TBT (Exp. 3) 24 OD effect for ΔP = .50. 
  Summary 

(Countable 
Images, Exp. 2) 

72 OD effect for ΔP = .50. 

 Preventive TBT (Exp. 1) 16 OD effect for ΔP = -.25, -.50, -.75. 
  TBT (Exp. 3) 24 OD effect for ΔP = -.50.  
  Summary 

(Countable 
Images, Exp. 2) 

72 OD effect for ΔP = -.50. 

 Non-
contingent 

TBT (Exp. 1) 16 OD effect. Causal ratings increased 
or decreased if the relationship 
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framed as generative or preventive, 
respectively. 

  TBT (Exp. 3) 24 OD effect. Most (20/31) participants 
said there was no relationship, but 
there was an OD effect for the 11 
who believed there was a generative 
relationship. 

  TBT (Exp. 4) 24 No OD effect. No relationship 
between causal ratings and p(o); 
participants were given randomly 
“spot-checks” between trials and 
asked to state whether the 
relationship was generative, 
preventive, or non-contingent. 

  Summary 
(Countable 
Images, Exp. 2) 

72 No relationship. 47/50 participants 
said there was no relationship. 

Lober &  Generative TBT (Exp. 3) 60 OD effect for ΔP = .40. 
Shanks 
(2000) 

 Summary (Pie 
Chart, Exp. 6) 

100 No OD effect for ΔP = .40. 

Note. TBT = trial-by-trial design; sample size = number of trials in a TBT design or total number 
of instances in a summary chart; OD effect = increases in causal judgments for generative and 
non-contingent causes or decreases in causal judgments for preventive causes as the probability 
of the outcome, p(o), increases. 
 
 In the trial-by-trial conditions, the studies in Table 4 found fairly reliable outcome density 

effects for generative, preventive, and non-contingent relationships. In the summarized 

conditions, two of the studies revealed outcome density effects for generative and preventive 

conditions at most levels of ΔP (Buehner & Cheng, 1997; Buehner et al., 2003). Lober and 

Shanks (2000), however, did not find evidence of an outcome density effect when individuals 

reviewed information about a generative relationship in a pie chart. For the two studies that 

examined non-contingent relationships, Buehner and Cheng (1997) found evidence of an 

outcome density effect. In contrast, a strong majority (94%) of participants in Buehner et al.’s 

(2003) study explicitly stated there was no relationship at either level of outcome density.  

 From the limited research on outcome density in summarized vs. trial-by-trial designs, it 

appears that the use of outcome density to guide causal judgments is somewhat dependent on 
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presentation format. As previously discussed, this may be due to how the information is 

organized within a summarized design. One study examined how outcome density affected 

causal judgments about non-contingent and generative relationships within multiple summarized 

designs (see Figures 6 A, B, and C), finding evidence of outcome density effects in each 

condition (Vallée-Tourangeau, Payton, & Murphy, 2008). However, individuals’ ability to 

distinguish between the non-contingent and contingent relationships (i.e., give higher causal 

ratings in the contingent condition) varied depending on the type of summarized design.  

Vallée-Tourangeau, Payton, and Murphy (2008) gave participants information about non-

contingent and generative relationships using countable images, simple phrases, or a frequency 

tree (see Figure 6 A, B, and C). Causal judgments increased as the probability of the outcome 

increased, producing an outcome density effect in each of the three display conditions. However, 

the ability to distinguish between a non-contingent relationship and contingent relationship (i.e. 

give higher causal ratings in the contingent condition) varied depending upon the summary 

display. When participants saw causal information in simple sentences, they could not 

distinguish between contingency values at either p(o) whereas they could do so for both high and 

low outcome density levels if the information was organized in frequency trees. When 

participants saw countable objects, ratings of contingent relationships were only higher than non-

contingent relationships if p(o) was high. 

 Although Vallée-Tourangeau et al. (2008) found outcome density effects in multiple 

types of summarized designs, the information presented in Table 4 suggests that outcome density 

effects may not be as prominent in summarized designs as they are in trial-by-trial presentations. 

For example, to maintain a constant value of ΔP = 0, p(o|c) and p(o|~c) must be equal such that 

the number of outcomes is the same in the presence and the absence of the cause. Therefore, it 
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may have been easy to identify a non-contingent relationship in the summarized formats used 

previously. 

 

Figure 7. Example of stimuli to be used in the present experiment, similar to the stimuli used in 
Buehner et al. (2003). In the organized sample, participants may more easily identify the 
relationship as non-contingent because the proportion of outcomes is clearly the same in the 
presence and the absence of the cause. The same information is presented in the scrambled 
sample, but in a less identifiable manner. 

 To address this concern, participants in the current experiment reviewed countable 

images in summarized designs that were either organized or scrambled (see Figure 7). In the 

organized condition, the prevalence of headaches was clearly the same in the presence and 

absence of the mineral (i.e., the putative cause), similar to that of Buehner et al.’s (2003) non-

contingent example. In the scrambled condition, participants reviewed a random organization of 

the same information. Whereas the organized design may obviate the need for attending to 

outcome density information, the scrambled design may prevent participants from easily 

recognizing the non-contingent relationship. Because the scrambled information is less 

discernible (i.e., more cognitively demanding), participants may be more likely to rely on a 

heuristic to guide causal judgments. If individuals demonstrate greater outcome density effects in 

the scrambled than the organized condition, this would suggest that individuals rely on outcome 

density effect as a heuristic to guide causal judgments during more cognitively demanding tasks.   
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Reasoning with Large Numbers. A second potential manipulation for influencing 

cognitive load is asking participants to make casual judgments about larger versus smaller 

samples of data. Larger numbers are represented less distinctly in the brain and prove to be more 

difficult compared to working with smaller numbers (Göbel et al., 2001; Nieder & Merten, 

2007). If larger numbers are more difficult to work with, perhaps people are more likely to 

employ a heuristic, such as relying on p(o), as a cue to causality when making inferences from 

larger numbers.  

 The importance of numerical size is illustrated in magnitude comparison tasks. In a 

magnitude comparison task, participants determine whether a target number is greater or less 

than a previously established reference number (e.g., Moyer & Landauer, 1976). To illustrate, 

Göbel et al. (2001) asked participants if target numbers were greater or less than the reference 

numbers 5 and 65. Participants were quicker and more accurate at this task as the distance 

between the target and the reference number increased. For example, they would be quicker to 

determine that 1 is less than 5 than to determine that 4 is less than 5. This effect was more 

pronounced when participants compared target numbers with the reference number 65. The 

difference in reaction times between numbers close (e.g., 64) and far (e.g., 20) from 65 was 

greater than the difference in reaction times between numbers close (e.g., 4) and far (e.g., 1) from 

5, producing what is called a size effect. These results suggest that larger numbers are less 

distinctly represented than smaller numbers. Single-cell recording work supports this 

interpretation. When rhesus monkeys were shown sets of black dots on a screen of varying 

magnitude, recordings of single unit neuron activity suggested firing specificity for small, but not 

large, numerical magnitudes (Nieder & Merten, 2007).  
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 Therefore, during a causal reasoning task, perhaps it is more difficult to reason with 

larger sample sizes because larger numbers have less distinct mental representations. Both the 

ΔP rule and power PC model suggest that individuals base causal ratings on comparisons of 

frequency information (i.e., conditional probabilities). As the magnitude of these frequencies 

increase, individuals may find it more difficult to make causal judgments using these statistical 

rules and may rely upon heuristics to guide their causal judgments during tasks. Thus, the 

outcome density effect, as a potential heuristic, may increase when individuals make causal 

judgments about larger samples.  

Current Experiment 

The primary purpose of the current experiment was to investigate the possible use of 

outcome density as a heuristic in causal learning. I did so by manipulating the cognitive demands 

of the task. If individuals rely more on outcome density over normative models (e.g., ΔP rule) to 

guide causal judgments in a cognitively demanding task, then this would suggest outcome 

density is a heuristic.  

Participants made causal judgments about the extent to which a relationship existed 

between various minerals (i.e., putative causes) and headaches (i.e., outcome). Their job was to 

determine whether each mineral produced headaches as a side effect, prevented headaches, or 

had no effect on headaches. In a summarized design, participants learned about the prevalence of 

headaches in a sample of individuals, half of whom received a mineral. Each mineral was non-

contingent such that the probability of the outcome (i.e., headaches) was the same in the presence 

and absence of the putative cause (i.e., mineral). After reviewing each stimulus, participants 

made a causal judgment about the extent to which the mineral generated, prevented, or had no 

effect on headaches. If participants gave higher causal judgments for a mineral when the 



 

	 24 

probability of headaches was high [p(o) = .667] than when the probability of headaches was low 

[p(o) = .333], this would be evidence of an outcome density effect. 

To examine the use of outcome density as a possible heuristic, I manipulated cognitive 

demand in two ways. First, I modified the sample size of the stimuli such that participants 

learned about a small or large sample of either 24 or 72 individuals, respectively. With the 

exception of streamed-trial designs (e.g., Crump et al., 2007), the majority of trial-by-trial 

outcome density research uses small sample sizes of 16 to 24. I chose 24 as the small sample 

condition not only to compare with the widely used trial-by-trial design, but also because 24 is 

large enough to allow for an outcome density manipulation. Additionally, I chose 72 for the 

more cognitively demanding, larger sample condition, because magnitude comparison tasks 

suggest numbers this large should be represented less distinctly (Göbel et al. 2001). 

Second, because it may be easier to detect non-contingent relationships in an organized 

image where the probability of headaches is clearly the same in the presence and absence of the 

mineral, I altered the presentation format so that the cause-outcome information was either 

organized or scrambled (see Figure 7). If the cause-outcome information is less distinct, 

individuals may be more likely to rely on heuristics when making causal judgments.  

Finally, others have speculated that individuals may only rely on outcome density when 

they fail to completely understand random assignment and the independence of alternative 

causes (Buehner et al., 2003). If participants understand that individuals are randomly assigned 

to receive or not receive a mineral, they should understand that the probability of headaches prior 

to the study is the same in both groups. If participants understand independence of alternative 

causes, they should understand that the putative strength of the mineral to affect headaches is 

independent of alternative background causes. Therefore, when the proportion of headaches is 
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the same in the group that receives a mineral and the group that does not receive a mineral, 

headaches must be due to an alternative cause. I assessed whether participants who could 

accurately answer questions about random assignment and the independence of alternative 

causes would be less reliant on outcome density as a heuristic when making causal judgments. If 

they have a strong understanding of experimental design, they may be less likely to use heuristics 

and more likely to provide normative causal judgments. 
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Methods 

Participants 

One hundred and seventy undergraduate students participated in exchange for course 

credit. An a-priori power analysis (with G*Power 3.1) yielded a sample size of 70 as sufficient to 

detect a small ( = .03) between-within interaction at a power of 0.95 in a repeated-measures 

design using an alpha level of .05. After collecting data from 70 participants, initial data analyses 

suggested that a larger sample was necessary to determine whether individual differences in the 

understanding of random assignment and alternative causes interacted with outcome density. 

After which, I aimed to double the sample size. Data from nine participants were not analyzed 

because, contrary to instructions, they used scratch paper during the experiment. The final 

sample of 161 participants (age: M  = 19.30, SD = 2.86) consisted mostly of women (118 

women, 41 men, 2 no responses) and undergraduate freshmen (74 freshmen, 64 sophomores, 11 

juniors, 12 seniors).   

Design 

The experiment was a 2 (outcome density: high, low) x 2 (sample size: small, large) x 2 

(presentation format: scrambled, organized) x 2 (order of presentation format: scrambled first, 

organized first) mixed-design. Outcome density, sample size, and presentation format were 

manipulated within-groups so that all participants learned about the same eight minerals. The 

order of presentation format was counterbalanced between participants so that participants first 

reviewed either the block of four organized or the block of four scrambled minerals. 

Materials 

 Cover story. Participants read a cover story (adapted from Liljeholm & Cheng, 2009) in 

which they imagined working at a pharmaceutical company that was developing an allergy 

2
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medicine comprised of several minerals, each of which could cause or prevent headaches as a 

side effect. The participants evaluated the results of studies done with eight different fictional 

minerals to determine the effect each mineral had on headaches. Each mineral had a unique 

alphanumeric label and was investigated by a different fictional laboratory to emphasize that 

each mineral was distinct.  

 Comprehension check questions. To evaluate participants’ understanding of random 

assignment and the independence of alternative background causes, they answered two 

comprehension check questions (from Buehner et al., 2003) prior to evaluating the minerals. For 

the comprehension check of random assignment, participants were told to assume individuals 

were randomly assigned to one of two groups by a coin toss. If the coin landed on heads, the 

individual was placed in the group that received the mineral. If the coin landed on tails, the 

individual was placed in the group that did not receive the mineral. Participants then indicated 

whether they expected the proportion of headaches in the group that received the mineral to be 

greater than, less than, or about the same as the proportion of headaches in the group that did not 

receive the mineral before the study began. An “about the same” response suggested an 

understanding of random assignment. 

 For assessing participants’ knowledge of the independence of alternative causes, 

participants were told that 50% of the individuals who received the mineral and 50% of the 

individuals who did not receive the mineral had a headache. Using this information, participants 

responded yes or no as to whether the headaches in the group of individuals who received the 

mineral could be attributed to the mineral. A “no” response suggested an understanding of the 

independence of alternative background causes. 
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 Stimuli. On each trial, participants learned summarized information (i.e., countable 

images) about one mineral. I created eight different stimuli to represent each combination of the 

outcome density (high, low), sample size (small, large), and presentation format (scrambled, 

organized) conditions (see Table 5, see also Figures 8 and 9). 

Table 5 

Experimental Design. 
    Cell Frequencies 

Sample Size  p(o) p(o|c) p(o|~c) A B C D 

24 0.333 0.333 0.333 4 8 4 8 
24 0.667 0.667 0.667 8 4 8 4 
72 0.333 0.333 0.333 12 24 12 24 
72 0.667 0.667 0.667 24 12 24 12 

 
 For each stimulus, half of the sample received the mineral (left side) and half of the 

sample did not receive the mineral (right side), such that the probability of receiving the mineral 

(i.e., probability of the cause) was p(c) = .5. The number of headaches present (i.e., cells a and c, 

sick emoticons) and headaches absent (i.e., cells b and d, healthy emoticons) varied for each 

stimulus depending on outcome density [p(o) = .333, .667] and sample size (n = 24, 72). Because 

the probability of the outcome was the same in the presence and the absence of the putative 

cause, however, ΔP was equal to zero for all eight minerals.  
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Figure 8. Organized presentation format. Half of the sample received the mineral (left side of the 
image) and half of the sample did not (right side). 

	

Figure 9. Scrambled presentation format. Half of the sample received the mineral (left side of the 
image) and half of the sample did not (right side).  

 The scrambled stimuli were created using a standardized procedure. To randomize the 

placement of emoticons on both sides of the image, I segmented a pie chart into nine slices. Each 

slice contained four placeholders for a total of 36 placeholders with a unique number (see Figure 

A. Low Outcome Density (N = 24) 

 

B. High Outcome Density (N = 24) 

 
C. Low Outcome Density (N = 72) 

 

D. High Outcome Density (N = 72) 

 

A. Low Outcome Density (N = 24) 

 

B. High Outcome Density (N = 24) 

 
C. Low Outcome Density (N = 72) 

 
 

D. High Outcome Density (N = 72) 
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10). I randomly assigned (www.random.org) each sick or healthy emoticon to a placeholder and 

repeated this procedure so that both sides of the image depicted a different scrambled 

organization of sick and healthy emoticons.  

 

 

Figure 10. Pie chart with placeholders used to generate scrambled faces.  

Procedure 

 Participants completed the experiment on a computer using E-Prime 2.0 software. First, 

participants read the cover story (see Appendix A) and answered the two comprehension check 

questions regarding random assignment and the independence of alternative causes. Next, 

participants reviewed information about each mineral for as long as they wanted before 

forwarding to the next screen, on which they made their causal judgment regarding that mineral. 

For each mineral, they made a causal judgment about the extent to which it influenced headaches 



 

	 31 

on a scale of -100 (strong influence on preventing headaches) to +100 (strong influence on 

producing headaches), where a value of 0 meant that the mineral had no influence on headaches.   

 Participants then answered a series of questions depending on their responses to the 

causal judgment question (see Figure 11). If participants made a judgment of 0, they then made a 

judgment about their confidence in the results from the lab on a scale of 0 (not at all confident) 

to 10 (extremely confident) and proceeded to the next trial (from Liljeholm & Cheng, 2009).  

 

Figure 11. The sequence of questions for each mineral depended on whether the participant 
made a causal judgment of zero (non-contingent relationship), greater than zero (generative 
relationship), or less than zero (preventive relationship).  

If participants made a positive judgment (the mineral produced headaches), they then 

answered a conditional probability question about the mineral’s generative strength: “Suppose 

that Mineral X is given to 100 people who are not currently suffering from a headache. How 

many of the 100 would develop a headache?” Next, they evaluated the background rate of 

headaches: “Imagine a group of 100 people who have not been given the mineral. How many of 

the 100 would have a headache?” Finally, they made a confidence judgment and proceeded to 

the next trial. If participants made a negative judgment (the mineral prevented headaches), they 

answered a conditional probability question about the mineral’s preventive strength: “Suppose 

that Mineral X is given to 100 people who are currently suffering from a headache. How many of 

Judgment = 0 

Confidence Judgment 

Judgment > 0 
Generative Conditional 

Probability Question 

Background Rate 
Question 

Confidence Judgment 

Judgment < 0 
Preventive Conditional 
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the 100 would no longer have a headache?” Next, they answered the background rate question, 

made a confidence judgment, and proceeded to the next trial.  

Participants viewed the four scrambled and four organized minerals in two uninterrupted 

blocks and were randomly assigned to first review either the block of scrambled (n = 78) or 

organized (n = 83) stimuli. I randomized the four minerals within each block to prevent possible 

order effects of the outcome density or sample size conditions.  

 A number of participants spontaneously indicated that they noticed the left and right sides 

of the stimuli were exactly the same. When doubling the sample size, I included an additional 

open-ended question after participants evaluated all eight minerals: “Did you notice anything 

about the experiment?” Finally, participants answered demographic questions about their age, 

gender, and year in school.  

Dependent Measures 

 Causal judgments. The primary variable of interest was the causal judgment that 

participants made on a scale from -100 to +100. From these judgments, I calculated difference 

scores between causal judgments for the high and low outcome density conditions. The 

difference score reflects the magnitude of the outcome density effect for each participant within 

each condition. Positive values mean that causal judgments were greater for the high outcome 

density condition, indicating an outcome density effect. Negative values mean that causal 

judgments were greater for the low outcome density condition, indicating the opposite of an 

outcome density effect. 

 Causal power. I calculated causal power (Cheng, 1997) using participants’ responses to 

the generative or preventive conditional probability question and the background rate question. If 
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participants gave a positive causal judgment, I used the generative equation (see Equation 5) to 

calculate causal strength: 

 # !" !!"#"$%!& !" !"" !"#!$" !"#$% !"# !"#$%&' !(# !" !"#$#%!"& !" !"" !"#!$" !"# !"#$% !"# !"#$%&')
!""!(# !" !"#$#%!"& !" !"" !"# !"#$% !"# !"#$%&')

 (5) 

If participants gave a negative causal judgment, I used the preventive equation (see 

Equation 6) to calculate causal strength: 

 # !" !"#$#%!"& !" !"" !"#!$" !"#$% !"# !"#$%&' !(# !" !"#$#%!"& !" !"" !"#!$" !"# !"#$% !"# !"#$%&')
# !" !"#$#%!"& !" !"" !"# !"#$% !"# !"#$%&'

 (6) 

If participants gave a causal judgment of zero, their causal power was zero. As with 

causal judgments, the magnitude of the outcome density effect was the difference in mean causal 

power estimates for the high and low outcome density conditions.  

 Confidence judgments and response time data. Additional variables of interest 

included confidence judgments, the amount of time participants reviewed each stimulus, and the 

amount of time spent answering questions (i.e., causal judgments, generative power, preventive 

power). This data was not transformed into difference scores, as there are no predetermined 

normative standards for this information.  
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Results 

Data Analyses 

 I conducted all data analyses using R (Version 3.3.2). Primary data analyses of causal 

judgments and causal power estimates included all participants (N = 161). Causal power analyses 

excluded 17 cases, in which causal power could not be calculated: some participants made off-

scale responses (over 100) to the background rate question (n = 1); for some, the denominator of 

the causal power equation was equal to zero and causal power was thus undefined (n = 6); and 

for others, estimates could not be calculated due to missing responses from the background rate 

(n = 9), preventive power (n = 1), or generative power (n = 1) questions. Secondary analyses 

used a subset of the data based on participants’ responses to the comprehension check questions. 

I excluded participants from these analyses if they did not answer the random assignment (n = 6) 

or independence of alternative causes (n = 2) question.  

Median causal judgments were equal to zero in each condition. Thus, to determine the 

effect of outcome density, I conducted a Wilcoxon-ranked sum test for each condition (24-

organized, 72-organized, 24-scrambled, 72-scrambled). To determine the effect of cognitive 

demand, all dependent variables were analyzed with separate linear mixed models, using 

participants’ intercepts as the sole random factor and modelling as fixed factors the full 2 

(sample size: small, large) x 2 (presentation format: organized, scrambled) x 2 (presentation 

format order: organized first, scrambled first) factorial. Denominator degrees of freedom for the 

fixed effects are Kenward-Rogers degrees of freedom. Measures of effect sizes for the outcome 

density effect and cognitive demand factors are based on pairwise comparisons of interest and 

are reported as Cohen’s d.  
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All Participants 

 Causal judgments. As can be seen in Table 6, on average participants demonstrated an 

outcome density effect across all conditions, giving significantly higher ratings in the high versus 

low outcome density conditions (see also Figure 12). Seventy (43.48%) of the 161 participants 

gave causal judgments of zero for all conditions, the expected normative causal judgment.  

Table 6 

Mean Causal Judgments for All Participants.  

Design Sample 
Size 

Outcome 
Density M Mdiff Wilcoxon 

Rank Sum 
Organized 24 Low -5.15 

(34.57) 
13.14 

(55.72) 
z = -2.87 
p = .002 

  High 7.99 
(35.42) 

d = 0.24  

 72 Low -4.01 
(34.45) 

13.20 
(51.04) 

z = 3.59 
p < .001 

  High 9.18 
(33.05) 

d = 0.26  

Scrambled 24 Low -6.31 
(32.01) 

19.04 
(50.61) 

z = 4.53 
p < .001 

  High 12.73 
(36.60) 

d = 0.38  

 72 Low -4.50 
(37.27) 

18.89 
(56.39) 

z = 4.19 
p < .001 

  High 14.39 
(39.52) 

d = 0.33  

Note. Causal judgments were made on a scale from -100 to +100. SDs in parentheses.  
 

Because median causal judgments were equal to zero across all conditions, I conducted 

four Wilcoxon-rank sum tests to non-parametrically test judgments for high versus low outcome 

density minerals (see Table 6). Results revealed significant differences in ranked values for the 

high and low outcome density minerals in all conditions2. As predicted, causal judgments were 

greater for high than low outcome density minerals, suggesting a pervasive outcome density 

effect in each condition despite median causal judgments being equal to zero.  
																																																								
2	Parametric one-sample t-tests also revealed that mean differences in causal judgments were 
significantly different from zero across all conditions.	
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Figure 12. The magnitude of the outcome density effect represents the mean differences in 
causal judgments between high and low outcome density minerals for each of the four 
conditions. Error bars indicate standard error and d indicates Cohen’s dz (i.e., size of the 
outcome density effect). 

Effect of cognitive demand on causal judgments. As shown in Figure 13, there was an 

outcome density effect in each condition such that mean differences in causal judgments were 

positive (i.e., causal judgments were greater for high than low outcome density minerals). 

Contrary to my predictions, however, the magnitude of this effect was independent of cognitive 

demand manipulations.  

The magnitude of the outcome density effect was slightly greater in the scrambled 

condition (M = 18.96, SD = 53.50) than in the organized condition (M = 13.17, SD = 53.35). 

However, the effect of presentation format was only marginally significant, F(1, 477) = 3.56, p = 

.060, d = 0.11. Thus, increased cognitive load as a function of presentation format does not 

appear to impact the outcome density effect. There were no effects of sample size, F(1, 477) < 

1.0, p = .979, dz < .01, order of presentation format, F(1, 159) = 0.11, p = .737, dz = 0.04, nor 

significant interactions (all p’s > .213). Because the magnitude of the outcome density effect was 
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independent of cognitive load manipulations, individuals do not appear to use outcome density as 

a heuristic when making causal judgments during cognitively demanding tasks. 

Causal power. Mean causal power estimates were close to zero (i.e., a normative causal 

power estimate) in each condition, as seen in Table 7. Of the 146 participants included in 

analyses, 75 (51.37%) had causal power estimates equal to zero for all eight minerals either 

because all initial causal judgments were equal to zero (n = 70) or all calculated causal power 

judgments were equal to zero (n = 5). As such, median causal power estimates were equal to zero 

for each condition.  

Table 7 

Mean Causal Power Estimates 

Design Sample 
Size 

Outcome 
Density M Mdiff Wilcoxon 

Rank Sum 
Organized 24 Low 0.05 

(0.27) 
-0.03 
(0.34) 

z = -0.54 
p = .293 

  High 0.02 
(0.22) 

d = 0.09  

 72 Low 0.06 
(0.26) 

-0.04 
(0.32) 

z = -1.27 
p = .103 

  High 0.02 
(0.24) 

d = 0.13  

Scrambled 24 Low 0.05 
(0.26) 

-0.04 
(0.32) 

z = -2.29 
p = .011 

  High 0.01 
(0.24) 

d = 0.15  

 72 Low 0.05 
(0.29) 

0.01 
(0.33) 

z = 1.42 
p = .922 

  High 0.06 
(0.24) 

d = 0.03  

Note. SDs in parentheses.  
  

Because mean causal power estimates were close to zero, there did not initially appear to 

be an effect of outcome density on causal power estimates in any condition. However, a 

Wilcoxon-rank sum test revealed that rankings of mean causal power estimates were 

significantly different between the high and low outcome density conditions when participants 
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responded to questions in the scrambled-small sample condition, z = -2.29, p = .01134 (see Figure 

13). There was an unexpected reversal of an outcome density effect, such that causal power 

estimates were greater for the low than the high outcome density mineral in the scrambled-small 

sample condition.  

 
Figure 13. The magnitude of the outcome density effect represents the mean differences in 
causal power estimates between high and low outcome density minerals for each of the four 
conditions. Error bars indicate standard error and d indicates Cohen’s dz (i.e., size of the 
outcome density effect). 

I predicted an effect of outcome density in each condition, such that causal power 

estimates would be greater in the high than the low outcome density minerals within each 

condition. Instead, causal power estimates appeared relatively close to normative estimates of 

zero in the scrambled-large sample, organized-small sample, and organized-large sample 

																																																								
3 Because of tied rank values, exact p-values could not be determined. Parametric one-sample t-
tests did not show mean differences in causal judgments to be significantly different from zero in 
the scrambled-small sample condition.  
4 Parametric one-sample t-tests supported this interpretation, as mean differences in causal power 
estimates were not significantly different from zero in the scrambled-large sample, organized-
small sample, and organized-large sample conditions.  
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conditions5. Although individuals demonstrated significant outcome density effects for causal 

judgments, this pattern was not replicated when evaluating estimates of causal power.   

Effect of cognitive demand. As can be seen in Figure 14, participants demonstrated a 

difference between the high and low outcome density conditions, but in a direction opposite that 

of an outcome density effect when they first viewed the organized block than if participants first 

viewed the scrambled block of minerals. In contrast, there was no effect of outcome density for 

participants who first reviewed the scrambled condition. This interpretation was supported by a 

main effect of the order of presentation format on mean differences in causal power estimates, 

F(1, 157.71) = 8.46, p = .004, d = 0.25. While the direction of the effect in the organized-first 

condition was unanticipated, it does not lend support to the theory that outcome density could be 

used as a heuristic in cognitively demanding scenarios.  

 
Figure 14. The magnitude of the outcome density effect represents the mean differences in 
causal power estimates between high and low outcome density minerals for each of the four 
conditions. Error bars indicate standard error and d indicates Cohen’s dz (i.e., size of the 
outcome density effect). 
																																																								
5 Parametric one-sample t-tests supported this interpretation, as mean differences in causal power 
estimates were not significantly different from zero in the scrambled-large sample, organized-
small sample, and organized-large sample conditions.  
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 Neither presentation format, F(1, 467.02) = 0.72, p = .398, dz = .07, nor sample size F(1, 

465.65) = 0.56, p = .454, dz = .06, had a significant effect on the magnitude of the outcome 

density effect. Additionally, there were no significant interactions (all p’s > 0.226). As with 

causal judgments, individuals do not use outcome density as a heuristic to inform estimates of 

causal power in cognitively demanding tasks.    

Subset Analyses Based on Comprehension Check Responses 

 I conducted separate analyses based on participants’ responses to the comprehension 

check questions. Of the 153 participants who responded to both comprehension check questions, 

33 answered both questions incorrectly, 72 answered one question correctly, and 48 answered 

both questions correctly (see Table 8).     

Table 8 

Frequencies of Responses to Comprehension Check Questions 
Category Response N 
Independence of Alternative Causes No (correct) 99 
 Yes (incorrect) 60 
   
Random Assignment Same (correct) 73 
 Greater Than (incorrect) 20 
 Less Than (incorrect) 62 
   
Overall Comprehension Check None Correct 33 
 One Correct 72 
 Both Correct 48 
 

Causal judgments. The effect of outcome density on causal judgments depended on how 

participants responded to the comprehension check questions (see Table 9). Within each group of 

participants, median causal judgments were equal to zero in every condition, as many 

participants gave causal judgments of zero for each mineral (both correct: n = 20 (41.67%), one 

correct: n = 35 (48.61%), none correct: n = 12 (36.36%).  



 

	 41 

Participants who answered one or both comprehension check questions correctly 

demonstrated an outcome density effect. Mean differences in causal judgments were positive, 

such that causal judgments were greater for the high than low outcome density conditions. 

However, participants who answered neither question correctly appeared insensitive to the 

outcome density manipulations. These results were supported by Wilcoxon-rank sum tests, 

which only showed significant differences in ranked causal judgments between the high and low 

outcome density conditions for the one correct and both correct groups6 (see Table 10).  

Table 9 

Mean Causal Judgments Based on Comprehension Check Responses 
   Both Correct 

(N = 48) 
One Correct 

(N = 72) 
None Correct 

(N = 33) 

Design Sample 
Size 

Outcome 
Density M Mdiff M Mdiff M Mdiff 

Organized 24 Low -6.67 
(37.92) 18.13 

(57.79) 
d = 0.31 

-8.46 
(30.61) 15.28 

(54.37) 
d = 0.28 

5.15 
(38.85) 2.27 

(61.26) 
d = 0.04   High 11.46 

(35.70) 
6.82 

(34.56) 
7.42 

(41.43) 
 72 Low -5.00 

(38.25) 
16.88 

(52.66) 
-4.75 

(33.49) 
11.88 

(48.71) 
-1.97 

(35.84) 
12.12 

(59.62) 
  High 11.88 

(33.87) 
d = 0.32 7.13 

(30.43) 
d = 0.24 10.15 

(40.01) 
d = 0.20 

Scrambled 24 Low -10.23 
(35.13) 

29.06 
(51.57) 

-6.94 
(24.74) 

18.04 
(44.07) 

1.06 
(42.11) 

6.09 
(62.06) 

  High 18.83 
(39.13) 

d = 0.56 11.10 
(32.63) 

d = 0.41 7.15 
(42.98) 

d = 0.10 

 72 Low -3.77 
(40.53) 

21.73 
(61.67) 

-4.75 
(33.49) 

20.13 
(44.78) 

-11.55 
(44.54) 

16.79 
(71.87) 

  High 17.96 
(37.94) 

d = 0.35 16.13 
(33.98) 

d = 0.45 5.24 
(53.15) 

d = 0.23 

Note. Causal judgments were made on a scale from -100 to +100. SDs in parentheses. 
  

																																																								
6 These results were also supported by parametric t-tests. Mean differences in causal judgments 
were significantly different from zero in the one correct and both correct groups. This trend did 
not reach significance in the none-correct group.  
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Table 10 

Causal Judgment Wilcoxon-Rank Sum Test Statistics by Comprehension Check Responses. 

Design Sample 
Size 

Both Correct 
(N = 48) 

One Correct 
(N = 72) 

None Correct 
(N = 33) 

Organized 24 z = 2.03 
p = .021 

z = 2.06 
p = .020 

z = 1.15 
p = .875 

 72 z = 2.69 
p = .004 

z = 1.93 
p = .027 

z = 0.81 
p = .208 

Scrambled 24 z = 3.19 
p = .001 

z = 3.13 
p = .001 

z = 0.14 
p = .443 

 72 z = 2.21 
p = .013 

z = 3.54 
p < .001 

z = 1.01 
p = .156 

Note. Causal judgments were made on a scale from -100 to +100. SDs in parentheses. 

Contrary to my predictions, participants who demonstrated an understanding of 

experimental design by answering both questions correctly were still susceptible to the outcome 

density effect. This suggests that the outcome density effect is pervasive and independent of 

understanding random assignment or the independence of alternative causes. I hypothesized that 

if participants had an incomplete understanding of experimental design (i.e., answered one or 

neither question correct), they would be more sensitive to changes in outcome density. While 

there was an effect of outcome density in the one correct group, this was not replicated in the 

none-correct group.  

Effect of cognitive demand. Cognitive demand manipulations only affected the influence 

of outcome density on causal judgments in the group of participants who correctly answered one 

of the comprehension check questions (n = 72). As can be seen in Table 11, there was a 

significant three-way interaction between sample size, presentation format, and the order of 

presentation format for the one-correct group, F(1, 210) = 5.79, p = .017.  
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Table 11 

Magnitude of the Outcome Density Effect on Causal Judgments for the One-Correct Group 

Order of Presentation Format Sample Size Mdiff SDdiff 

Organized First    
Organized 24 0.67 47.78 
 72 5.77 48.49 
Scrambled 24a 20.44 42.01 
 72a 13.74 40.14 
Scrambled First    
Organized 24 32.55 57.28 
 72 19.09 48.71 
Scrambled 24 15.21 46.87 
 72 27.67 49.28 
Note. Mean differences in causal judgments between high and low outcome density conditions 
for the group of participants (n = 72) who correctly answered one comprehension check 
question. Subscript indicates a significant difference in the magnitude of the outcome density 
effect via Tukey’s honestly significant difference test.  
 
 As depicted in Figure 15, this three-way interaction is driven by differences in causal 

judgments for the scrambled condition if participants first saw the organized block of minerals. 

In the organized-first group, the magnitude of the outcome density effect for the scrambled 

condition (i.e., the second block they reviewed) was greater for the small sample size than the 

large sample size. A Tukey’s HSD (honest significant difference) test revealed this difference to 

be significant, t(209.99) = 2.64, p = .044, d = 0.16. There were no other significant pairwise 

comparisons in the organized-first group (all ps > .208) or the scrambled-first group (all ps > 

.148). 
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Figure 15. The magnitude of the outcome density effect for causal judgments (mean differences 
between high and low outcome density conditions) in the one-correct group. Error bars indicate 
standard error.  

Because these findings do not provide a straightforward interpretation of how cognitive 

demand affects the magnitude of the outcome density effect, they do not support the use of 

outcome density as a heuristic when individuals have an incomplete understanding of 

experimental design (i.e., answered only one comprehension check question correctly).  

For participants answering both questions correct (n = 48) and those answering neither 

question correct (n = 33), there were no effects of the cognitive demand manipulations (all ps > 

.118). Together, these findings suggest that the magnitude of the outcome density effect is 

independent of cognitive demand manipulations even if participants have an incomplete 

understanding of experimental design.  

Causal power. For each group of participants, mean causal power estimates were close 

to zero in each condition (see Table 12). Of the 161 participants, many in each group had causal 
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power estimates equal to zero for each mineral [both correct: 21 (47.72%), one correct: 39 

(60.00%), neither correct: 11 (36.67%)]. As such, median causal power estimates were equal to 

zero in each condition.  

Table 12 

Mean Causal Power Estimates Based on Comprehension Check Responses 
   Both Correct 

(N = 48) 
One Correct 

(N = 72) 
None Correct 

(N = 33) 

Design Sample 
Size 

Outcome 
Density M Mdiff M Mdiff M Mdiff 

Organized 24 Low 0.08 
(0.28) -0.06 

(0.31) 
d = 0.20 

0.06 
(0.27) -0.05 

(0.37) 
d = 0.14 

0.01 
(0.30) 0.07 

(0.34) 
d = 0.20   High 0.02 

(0.18) 
0.00 

(0.24) 
0.08 

(0.26) 
 72 Low 0.09 

(0.28) 
-0.07 
(0.41) 

0.03 
(0.27) 

-0.03 
(0.21) 

0.10 
(0.24) 

-0.03 
(0.39) 

  High 0.03 
(0.21) 

d = 0.17 -0.01 
(0.24) 

d = 0.16 0.07 
(0.28) 

d = 0.07 

Scrambled 24 Low 0.09 
(0.27) 

-0.03 
(0.30) 

0.04 
(0.24) 

-0.06 
(0.24) 

0.04 
(0.31) 

-0.03 
(0.34) 

  High 0.06 
(0.25) 

d = 0.10 -0.01 
(0.23) 

d = 0.23 0.01 
(0.28) 

d = 0.08 

 72 Low 0.09 
(0.31) 

-0.02 
(0.45) 

0.00 
(0.27) 

0.04 
(0.25) 

0.08 
(0.31) 

-0.02 
(0.30) 

  High 0.08 
(0.23) 

d = 0.03 0.04 
(0.20) 

d = 0.16 0.08 
(0.35) 

d = 0.06 

Note. Causal power estimates were calculated using the generative (see Equation 5) and 
preventive (see Equation 6) formulas. SDs in parentheses.  
 

Outcome density had no effect on estimates of causal power within the three groups of 

participants. This is consistent with the whole-group analyses, in which there was no significant 

effect of outcome density, and was confirmed by Wilcoxon-rank sum tests (see Table 13)7.  

																																																								
7 Because of tied rank and/or zero values, exact p-values could not be determined. These results 
were supported by parametric one-sample t-tests, which did not reveal mean differences between 
causal power estimates for high and low outcome density conditions to be significantly different 
from zero. 	



 

	 46 

Table 13 

Causal Power Estimate Wilcoxon-Rank Sum Test Statistics by Comprehension Check Responses 

Design Sample 
Size 

Both Correct 
(N = 48) 

One Correct 
(N = 72) 

None Correct 
(N = 33) 

Organized 24 z = 1.12 
p = .132 

z = 0.50 
p = .309 

z = 0.39 
p = .350 

 72 z = 0.75 
p = .227 

z = 0.48 
p = .315 

z = 0.99 
p = .839 

Scrambled 24 z = 0.78 
p = .218 

z = 1.54 
p = .061 

z = 0.23 
p = .410 

 72 z = 0.17 
p = .433 

z = 1.54 
p = .224 

z = 0.82 
p = .794 

 
 Effect of cognitive demand. As I found for the entire sample, manipulations of sample 

size and presentation format had no effect on the magnitude of the outcome density effect in any 

of the three groups. For participants answering both questions correct (n = 48), participants 

answering one question correct (n = 72), and those answering neither question correct (n = 33), 

there were no effects of presentation format or sample size (all ps > .088). Thus, causal power 

estimates are not sensitive to manipulations of cognitive demand even when participants have an 

incomplete understanding of experimental design.  

I did observe a non-significant, but marginal effect of counterbalancing in the one-correct 

group: outcome density had a greater effect on causal judgments if participants first saw the 

organized block (Mdiff = -.06, SDdiff = .27) than for participants who first saw the scrambled block 

(Mdiff = .01, .27), F(1, 69.69) = 3.73, p = .058, dz = 0.31, for the main effect of counterbalancing 

order. This pattern fits the findings for the entire sample, but was not replicated in the both-

correct or none-correct groups (ps > .098).  

Conditional Probability Questions 

 To determine if participants accurately tracked the frequencies of headaches, I analyzed 

participants’ responses to conditional probability questions regarding the background rate (how 
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many headaches in a group of 100 people who did not receive the mineral), generative power 

(how many headaches in a group of 100 people who did receive the mineral), and preventive 

power (how many would no longer have headaches in a group of 100 people who received the 

mineral). Participants only responded to the generative or preventive power questions if they 

made a positive or negative causal judgment for a mineral, respectively.  

For the generative power and background rate questions, normative frequency estimates 

would be 33 in the low outcome density condition and 67 in the high outcome density condition. 

For the preventive power question, normative frequency estimates would be 67 in the low 

outcome density condition and 33 in the high outcome density condition. Table 14 depicts the 

average frequency estimates across all conditions. To assess the effects of outcome density, 

sample size, presentation format, and the order of presentation format (i.e., counterbalancing 

order), I conducted separate 2x2x2x2 ANOVA’s on raw responses to each of the questions.  

Table 14 

Mean Frequency Estimates for Conditional Probability Questions 
   Background Rate Generative Preventive 
Design Sample 

Size 
Outcome 
Density 

N 
 

M 
(SD) 

N 
 

M 
(SD) 

N M 
(SD) 

Organized 24 Low 159 36.07 
(16.11) 

18 36.44 
(23.00) 

35 58.51 
(22.85) 

 24 High 160 53.34 
(19.82) 

37 59.62 
(18.11) 

12 38.50 
(25.81) 

 72 Low 159 37.33 
(17.05) 

21 36.14 
(24.93) 

35 61.29 
(18.86) 

 72 High 161 55.85 
(19.37) 

43 53.72 
(21.48) 

8 46.88 
(23.01) 

Scrambled 24 Low 159 39.02 
(20.13) 

15 42.40 
(24.09) 

32 63.56 
(20.66) 

 24 High 160 53.84 
(22.32) 

41 60.00 
(19.07) 

11 37.36 
(25.52) 

 72 Low 160 38.41 
(20.68) 

23 47.17 
(29.50) 

39 55.03 
(19.59) 

 72 High 160 53.78 
(19.67) 

51 61.76 
(20.77) 

10 51.50 
(28.19) 
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Background rate. As seen in Table 15, the effect of outcome density on frequency 

estimates about the background rate of headaches was modulated by an interaction with the order 

of presentation format, F(1, 1104.19) = 22.07, p < .001. Frequency estimates were significantly 

greater for the high than the low outcome density minerals in both the organized-first, d = 1.06, 

and scrambled-first, d = 0.63, conditions, supported by a Tukey’s HSD test.    

Table 15 

Mean Background Rate Frequency Estimate by Outcome Density and Counterbalancing Order 
Order of Presentation Format Outcome Density M SD 

Organized First Low 33.63 17.23 
 Higha 54.61 22.05 
Scrambled First Low 42.00 19.03 
 Higha 53.78 18.30 
Note. Subscript indicates non-significant differences via Tukey’s HSD test.  
 
 Pairwise comparisons also revealed that frequency estimates for low outcome density 

minerals were significantly greater in the scrambled-first than the organized-first group, d = 0.46. 

The initially scrambled information may have given the appearance of more headaches in the 

low outcome density condition, which carried over to the organized block of minerals. There was 

no significant difference in responses to the background rate question for the high outcome 

density minerals between the organized-first and scrambled-first group, d = 0.04. The 2x2x2x2 

ANOVA did not reveal other main effects or interactions to be significant (all ps > .419). 

Overall, these results suggest that participants processed the background rate of the minerals and 

made responses reflecting the difference between the low and high outcome density conditions. 

  Generative power. As expected, frequency estimates about generative power (see Table 

14) were greater in the high (M = 58.87, SD = 20.08) than the low (M = 40.83, SD = 25.77) 

outcome density conditions, F(1, 226.30) = 45.21, p < .001, d = 0.79. There was also a 

significant main effect of presentation format, such that frequency estimates were greater in the 
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scrambled (M = 56.39, SD = 23.34) than the organized (M = 49.84, SD = 23.29) conditions, F(1, 

195.19) = 4.99, p = .027, d = 0.28. This provides additional support for the idea that the 

scrambled design gave an impression of more headaches. 

 Additionally, there was a significant interaction between sample size and the order of 

presentation format, F(1, 197.47) = 4.38, p = .038. However, Tukey’s HSD tests did not reveal 

comparisons between any of the conditions to be significantly different from each other (all ps > 

.097). There were no other significant main effects or interactions (all ps > .133). 

 Preventive power. Frequency estimates for the preventive power questions (see Table 

14) were greater in the low (M = 59.38, SD = 20.55) than the high (M = 43.00, SD = 25.56) 

outcome density conditions. A 2x2x2x2 ANOVA revealed the main effect of outcome density to 

be significant, F(1, 160.69) = 11.33, p = .001, d = .706. There were no additional significant 

main effects or interactions (all ps > .072).    

Reaction Time Data 

 To evaluate the manipulation of cognitive load, I assessed the amount of time participants 

spent reviewing stimuli prior to making a causal judgment and the amount of time participants 

spent making a causal judgment. I conducted all analyses using the natural log of the reaction 

time data. If participants spent more time spent reviewing data and making causal judgments in 

the scrambled and/or large sample minerals, these conditions may be more cognitively 

demanding than the organized and/or small sample conditions. Therefore, longer reaction times 

in the scrambled and large sample conditions would support the presentation format and sample 

size conditions as successful manipulations of cognitive load.  

 Time spent reviewing stimuli. The amount of time participants spent reviewing stimuli 

depended on sample size, presentation format, the order of presentation format, and outcome 
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density (see Table 16). The analysis of log reaction time data revealed two significant 

interactions: an interaction between presentation format and sample size, F(1, 1113) = 7.93, p = 

.005, and an interaction between presentation format and the order of presentation format, F(1, 

1113) = 164.53, p < .001. 

Table 16 

Mean Time (milliseconds) Spent Reviewing Stimuli  
Design Sample Size Outcome Density M (ms) SD 
Organized 24 Low 9.35 0.80 
  High 9.41 0.87 
 72 Low 9.55 0.90 
  High 9.67 0.85 
Scrambled 24 Low 9.61 0.72 
  High 9.75 0.83 
 72 Low 10.07 0.75 
  High 10.16 0.91 
Note. Table includes the natural log of raw reaction time data. 
  

As shown in Table 17, participants spent more time looking at the larger than the smaller 

sample sizes. Tukey’s HSD tests revealed that the difference in reaction times between small and 

large sample sizes was greater in the scrambled, d = 0.55, than the organized, d = 0.27, 

conditions. All remaining pairwise comparisons were significant with the exception of the 

average time spent reviewing the organized-large sample and scrambled-small sample 

conditions. Overall, these results suggest that presentation format and sample size conditions 

successfully manipulated cognitive load.  

Table 17 

Mean Time Spent Reviewing Mineral Data by Presentation Format and Sample Size 
Presentation Format Sample Size M (ms) SD (ms) 
Organized 24 9.38 0.83 
 72a 9.61 0.88 
Scrambled 24a 9.68 0.78 
 72 10.12 0.83 
Note. Analyses used the natural log of raw reaction time data. Subscript indicates non-significant 
differences in confidence judgments via Tukey’s HSD test. 
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The effect of presentation format was also tempered by the order of presentation format 

(see Table 18). Tukey’s HSD tests revealed that the organized-first participants spent longer 

looking at organized stimuli than the scrambled-first group, d = 0.67, and the scrambled-first 

participants spent longer looking at scrambled stimuli than the organized-first group, d = 0.49 (ps 

< .001). 

Table 18 

Mean Time Spent Reviewing Mineral Data by Presentation Format and Counterbalancing Order  
Counterbalancing Order Presentation Format M (ms) SD (ms) 
Organized-First Organizeda 9.76 0.75 
 Scrambleda 9.70 0.82 
Scrambled-First Organized 9.21 0.89 
 Scrambled 10.10 0.80 
Note. Analyses used the natural log of raw reaction time data. Subscript indicates non-significant 
differences in confidence judgments via Tukey’s HSD test. 
 

 In the organized-first group, however, there was no difference between the amount of 

time looking at the scrambled and organized conditions, d = 0.08, p = .669. All other pairwise 

comparisons were significantly different (p < .001). It is possible that when participants first 

reviewed the organized (i.e., less demanding) stimuli, subsequent scrambled stimuli were easier 

to interpret.  

Finally, participants spent more time reviewing stimuli in the high outcome density (M = 

9.75, SD = 0.91) than the low outcome density (M = 9.64, SD = 0.84) conditions, although the 

size of this effect was small, F(1, 1113) = 12.64, p < .001, d = 0.12.  In addition to presentation 

format and sample size, this suggests that outcome density may have also affected cognitive 

load.  

 Time spent making causal judgments. Cognitive demand manipulations also affected 

the amount of time participants spent making causal judgments (see Table 19).  
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Table 19 

Mean Time Spent Making Causal Judgments (in milliseconds) 
Design Sample Size Outcome Density M SD 
Organized 24 Low 8.89 0.80 
  High 8.86 0.83 
 72 Low 8.92 0.84 
  High 8.95 0.88 
Scrambled 24 Low 8.84 0.84 
  High 8.79 0.84 
 72 Low 8.93 0.89 
  High 8.86 0.85 
Note. Table includes the natural log of raw reaction time data. 
 
 As can be seen in Table 20, there was a significant three-way interaction between sample 

size, presentation format, and the order of presentation format, F(1, 1113) = 4.49, p = .034. In 

both the organized-first and scrambled-first groups, participants spent more time making causal 

judgments in the first block of minerals. There was no effect of sample size on time spent 

making causal judgments in the organized-first group, as revealed by Tukey’s HSD tests. In the 

scrambled-first group, sample size only affected reaction time in the scrambled condition, where 

participants spent longer reviewing the larger sample sizes, p = .028, d = 0.24. 

Table 20 

Mean Time Spent Making Causal Judgments for Scrambled-First Participants 
Presentation Format Sample Size M (ms) SD (ms) 
Organized-First    
Organized 24b 9.16 0.80 
 72b 9.24 0.82 
Scrambled 24c 8.55 0.80 
 72c 8.52 0.75 
Scrambled-First    
Organized 24a 8.58 0.72 
 72a 8.60 0.77 
Scrambled 24 9.10 0.78 
 72 9.29 0.81 
Note. Analyses used the natural log of raw reaction time data. Subscript indicates non-significant 
differences in confidence judgments via Tukey’s HSD test. 
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Confidence Judgments 

 As can be seen in Table 21, participants were slightly more confident in the results from 

the laboratory when outcome density was low (M = 5.45, SD = 2.44) than when outcome density 

was high (M = 5.28, SD = 2.51), F(1, 1102.25) = 5.64, p = .018, d = .07, for the main effect of 

outcome density.  

Table 21 

Mean Confidence Judgments 
Design Sample Size Outcome Density M SD 
Organized 24 Low 5.65 2.48 
  High 5.30 2.55 
 72 Low 5.56 2.39 
  High 5.39 2.54 
Scrambled 24 Low 5.51 2.47 
  High 5.29 2.52 
 72 Low 5.09 2.41 
  High 5.15 2.43 
 

The analysis of confidence judgments revealed two significant interactions: an interaction 

between presentation format and counterbalancing order, F(1, 1102.25) = 5.04, p = .025, and an 

interaction between presentation format and sample size, F(1, 1102.25) = 3.59, p = .058. As seen 

in Table 22, the effect of format order on confidence judgments was limited to the scrambled 

condition. Participants in the organized-first group were less confident about scrambled results 

from a laboratory than participants in the scrambled-first group. A post-hoc Tukey’s HSD test 

revealed this difference to be significant, p = .003, d = 0.22. No other pairwise comparisons were 

significant (all ps > .342). 
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Table 22 

Mean Confidence Judgments by Presentation Format and Counterbalancing Order 
Order of Presentation Presentation Format  M SD 
Organized-First Organized 5.21 2.53 
 Scrambleda 5.17 2.67 
Scrambled-First Organizeda 5.74 2.42 
 Scrambled 5.36 2.20 
Note. Subscript indicates significant differences in confidence judgments via Tukey’s HSD test. 
 

The effect of presentation format was also modulated by a marginal interaction with 

sample size. As seen in Table 23, participants were slightly less confident in data from the larger 

than smaller sample size conditions. A Tukey’s post-hoc test revealed this difference to be driven 

by reduced confidence in the scrambled-large sample condition than the organized-small sample, 

d = 0.14, organized-large sample, d = 0.15, and scrambled-small sample, d = 0.11, conditions.   

Table 23 

Mean Confidence Judgments by Presentation Format and Sample Size 
Presentation Format Sample Size M SD 
Organized 24a 5.47 2.52 
 72b 5.48 2.46 
Scrambled 24c 5.40 2.49 
 72abc 5.12 2.42 
Note. Subscript indicates significant differences in confidence judgments via Tukey’s HSD test. 
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Discussion 

Summary 

In this experiment, I investigated the possible role of outcome density as a heuristic that 

individuals use to reason about a cause-outcome relationship in a cognitively demanding causal 

learning task. There were pervasive outcome density effects for causal judgments across all 

conditions, adding to the prevalence of the outcome density effect for non-contingent causes in 

the literature (e.g., Buehner et al., 2003). Unexpectedly, this pattern was not replicated for 

estimates of causal power.8 Overall, the magnitude of the outcome density effect was 

independent of cognitive load for both causal judgments and causal power estimates. Thus, use 

of outcome density as a heuristic cannot explain the pervasive outcome density effects found for 

causal judgments.   

 I also assessed the magnitude of the outcome density effect with regards to participants’ 

understanding of experimental design. Specifically, I hypothesized that individuals who correctly 

answered questions regarding random assignment and/or the independence of alternative causes 

would be less susceptible to the outcome density effect. The results did not support this 

hypothesis, as there were pervasive outcome density effects for causal judgments by participants 

who answered only one question correctly (N = 72) and participants who answered both 

questions correctly (N = 48). There was no evidence of outcome density effects in the group of 

participants who answered neither question correctly (N = 33). In line with the analysis of the 

entire sample, outcome density had no effect on causal power estimates when analyzed by 

comprehension check responses.  

																																																								
8 There was a reversal of the outcome density effect in the scrambled-small sample condition for 
causal power estimates (i.e., greater causal power estimates in the low outcome density 
condition). Because the effect was small (dz = 0.15) and only found in one condition, changes in 
p(o) do not appear to affect causal power estimates overall. 
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 As with the whole-group analyses, the results did not support differential reliance on 

outcome density as a heuristic between three groups. In the group that correctly answered one 

question, there seemed to be an effect of presentation format that was dependent on the order of 

presentation format and sample size. Because these results were not straightforward, we cannot 

assume that the one-correct group relied more on outcome density as a heuristic in the more 

cognitively demanding (i.e., scrambled) condition. In line with the whole-group analyses, there 

was no effect of cognitive demand manipulations on causal power estimates in any of the three 

groups.  

Confidence and Sample Size 

 Although outcome density did not affect causal power estimates, there were pervasive 

outcome density effects for causal judgments. If the outcome density effect is not due to 

increased cognitive load, then why were causal judgments greater in the high outcome density 

conditions? Here, there was no effect of sample size on causal judgments. However, previous 

research suggests that causal judgments increase as the size of the sample increases (e.g., 

Liljeholm & Cheng, 2009). According to the statistical law of larger numbers, data becomes 

increasingly reliable as the number of observations increase (Van Overwalle & Van Rooy, 

2001). As such, modulations in causal judgments for non-contingent relationships may be due to 

changes in the perceived reliability of a small or large sample (see Buehner & Cheng, 1997; 

Liljeholm & Cheng, 2009).  

The influence of reliability on causal judgments may stem from how researchers pose 

causal questions (Liljeholm & Cheng, 2009). According to the conflation hypothesis (Buehner & 

Cheng, 1997), the wording of specific questions may lead individuals to consider both their 

assessment of causal strength and their belief in the reliability of the data when making a causal 
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judgment. In Buehner et al.’s (2003) first experiment, participants made a judgment about how 

strongly they thought a cause generated an outcome. The wording of this question is ambiguous, 

as it is unclear whether the participant is rating the strength of the cause to produce the outcome 

or the strength of their belief in the relationship.  

In the latter interpretation, when a causal question is ambiguous, participants may 

conflate causal judgments with confidence in the information provided. Thus, if the overall size 

of the sample increases, causal judgments of a non-contingent relationship would be closer to 

zero. For generative and preventive causes, causal judgments would increase as sample size 

increases, thus increasing reliability in the strength of the cause. To test this, Buehner and Cheng 

(1997) asked participants to make causal strength judgments based on information from either 16 

individual trials (Experiment 1) or a summary of 100 trials (Experiment 2). Because there were 

reduced outcome density effects in the larger sample condition, Buehner and Cheng (1997) 

suggested that participants were more confident that the relationship was non-contingent.  

In the current experiment, the conflation hypothesis would predict reduced outcome 

density effects and increased confidence judgments for the larger sample conditions. However, 

there were no effects of sample size on the magnitude of the outcome density effect, as outcome 

density effects were pervasive across all conditions. Furthermore, participants were marginally 

less confident in the scrambled condition when the sample size was large. As there was no effect 

of sample size on confidence judgments in the organized condition, these findings do not support 

increased confidence in larger samples.  

The current experiment manipulated objective sample size, but there is a possibility that it 

is not objective sample size that is most important, but rather virtual sample size. Liljeholm and 

Cheng (2009) introduce the notion of virtual sample size as the number of trials in which a cause 
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can prove its power. Recall the gardener example, in which a gardener applied Fertilizer A to 6 

of 12 plants and Fertilizer B to 6 of 12 different plants. In plot A, 4 of 6 fertilized and 4 of 6 

unfertilized plants grow, whereas in plot B, 2 of 6 fertilized and 2 of 6 unfertilized plants grow.  

Using the information from the unfertilized plants, the gardener would expect 4 of 6 

fertilized plants in plot A to grow because of alternative causes. Thus, Fertilizer A only had 2 

cases (i.e., plants) in which it could prove its generative strength. In contrast, the gardener would 

only expect 2 of 6 unfertilized plants in plot B to grow due to alternative causes. Fertilizer B 

would therefore have 4 cases in which it could prove its generative strength. Both Fertilizer A 

and Fertilizer B are non-causal, but the gardener may be less confident in the Fertilizer A data 

because there were less cases in which it could prove its generative power. Thus, the gardener 

may be more likely to give a causal judgment of zero for Fertilizer B, because the data for 

Fertilizer B as a non-contingent cause is perceived as more reliable.  

 For contingent relationships, however, increases in virtual sample size should lead to 

increased generative or preventive causal judgments. For generative causes, virtual sample size is 

equal to the number of instances in which the outcome is absent prior to the cause. For 

preventive causes, virtual sample size is equal to the number of instances in which the outcome 

is present prior to the cause. If the cause proves its strength in more cases, this would increase 

reliability in its generative or preventive power, thereby increasing causal judgments. In the 

current experiment, however, participants simultaneously evaluated whether a given cause was 

preventive or generative and were not given information about the number of outcomes prior to 

the cause. Therefore, it is unclear what virtual sample size participants would have used on any 

give trial. 
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Ambiguity of Causal Judgment Question 

 Proposals of the conflation hypothesis assume that conflation of reliability and strength is 

due to the ambiguity of the causal judgment question (e.g., Liljeholm & Cheng, 2009). Griffiths 

and Tenenbaum (2005), however, dispute the influence of ambiguity. Instead, causal judgments 

should incorporate information about the strength of the cause and confidence based on the 

reliability of the sample. Thus, the ambiguous nature of the question should have no effect on 

causal judgments. Their causal support model posits that individuals base causal judgments on 

whether the observed data supports the target cause as present in the presence of the effect and 

alternative background causes (Graph A of Figure 16) or absent in the presence of the effect and 

alternative background causes (Graph B of Figure 16). The extent to which the data supports the 

cause as producing the outcome is equal to the log of the probability of the data given Graph A 

versus that given Graph B (see Equation 7).  

A.  B.  
Figure 16. According to the causal support model (Griffiths & Tenenbaum, 2005), individuals 
make causal judgments using the probability that the evidence given Graph B outweighs the 
evidence of an effect given Graph A. 

     Support = log (!(!|!"#$% !)
!(!|!"#$% !)

)  (7) 

Neither the power PC model nor the ΔP rule accounts for effects of sample size, although 

the conflation hypothesis (e.g., Liljeholm & Cheng, 2009) offers an explanation for why sample 

size may affect causal power estimates. Griffiths and Tenenbaum’s (2005) model of causal 

support considers that sample size may have multiple influences on causal judgments. When 
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exposed to a larger sample of data, individuals will adjust their causal judgments as they are 

introduced to new evidence and become more certain of these beliefs. As such, the causal 

support model suggests that the influence of sample size is inextricable from beliefs about a 

cause and an outcome.  

As previously discussed, sample size did not affect causal judgments nor causal power 

estimates in the current experiment. Therefore, the conflation hypothesis is unable to explain 

possible reasons for these findings. It is possible, however, that outcome density effects for 

causal judgments were due to the ambiguous nature of the question. In Buehner et al.’s (2003) 

first experiment, participants made a causal judgment about how strongly they thought a cause 

prevented or caused (i.e., generated) an outcome. The authors note that the wording of this 

question made it unclear whether participants were making a judgment about the strength of the 

cause in the presence of alternative causes (thus making a contingency judgment) or making a 

judgment about the strength of the cause in the absence of alternative causes (thus making a 

causal power judgment). In a second experiment, Buehner et al. (2003) changed the wording of 

the question. Instead, participants were asked to estimate the number of outcomes if the putative 

cause was introduced to 100 cases. Overall, participants’ causal power estimates were more 

normative in comparison to Experiment 1.  

These findings are analogous to the results of the present study. There were pervasive 

outcome density effects when participants made a causal judgment about the extent to which a 

mineral influenced headaches on a scale from -100 (the mineral has a strong influence on 

preventing headaches) to +100 (the mineral has a strong influence on producing headaches). 

However, outcome density had little to no effect on participants’ causal power estimates 

calculated from responses to frequency estimates about the generative strength, preventive 
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strength, or background rate of headaches for the mineral. Thus, outcome density effects were 

predominantly found when the causal judgment question was ambiguous. 

However, the ambiguous nature of the question cannot fully explain outcome density 

effects for causal judgments. Participants demonstrated outcome density effects for causal 

judgments across all conditions. If outcome density is due to ambiguity, then it should not occur 

in each condition. For example, when the information is organized, the non-contingent nature of 

the relationship is clearer and ambiguity of the question should not have an effect. 

Alternatively, individuals could be relying on a cell A strategy, a heuristic where causal 

judgments are based on the frequency of the joint presence of the cause and outcome (e.g., 

Schustack & Sternberg, 1981). Although it is not always used as the sole information to inform 

causal judgments, individuals tend to weigh cell A information more heavily than information 

from the other cells (see Figure 2) when making a causal judgment (Wasserman, Dorner, & Kao, 

1990). Using the cell A strategy or outcome density to guide causal judgments are two distinctive 

strategies, as the outcome density effect assumes individuals are relying on both cell A and cell C 

(i.e., the probability of the outcome in the absence of the cause). The cell A strategy would 

correspond more with findings regarding the order in which individuals rely on cell information, 

in which cell use is ordered cell A > cell B > cell C > cell D (i.e., cell B is weighted more heavily 

than cell C, see Wasserman et al., 1990). 

Implications and Future Directions 

Our findings do not suggest the use of outcome density as a heuristic to make causal 

judgments about a non-contingent cause when cognitive demand is high. It is possible, however, 

that these findings are due to the nature of the stimuli. At the beginning of the study, several 

participants made unprompted comments about the nature of the stimuli. Therefore, I added a 
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question to the end of the study that explicitly asked participants if they noticed anything. Of the 

89 participants who responded, 51 (57.30%) noted that there were the same number of headaches 

in the group that received the mineral and the group that did not receive the mineral. 

Additionally, 28 (31.46%) stated that because the results were the same for both groups, there 

was no relationship between the mineral and headaches.  

Thus, the manipulations of cognitive demand may not have influenced the magnitude of 

the outcome density effect because the non-contingent relationship was clearly visible (i.e., same 

number of headaches in the presence and the absence of the cause). Future studies should 

evaluate this for non-contingent causes in which cell A and cell C are unequal, making the non-

contingent relationship less discernible. Furthermore, this would allow researchers to evaluate 

whether these findings are due to reliance on a cell A strategy rather than outcome density as a 

whole. 

Perhaps the most important finding in this experiment is that outcome density effects 

were pervasive for causal judgments but not causal power estimates. This may be due to the 

ambiguous nature of the question, although it is not certain why the outcome density effects 

would persist in all cognitive demand conditions.  

Finally, the current experiment cannot entirely rule out outcome density as a heuristic 

because the current experiment solely investigated non-contingent relationships. Outcome 

density effects are also prevalent for generative and preventive relationships and thus, outcome 

density should also be investigated with regard to cognitive manipulations for causal 

relationships (e.g., Buehner et al., 2003).  
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Appendix A 

Imagine the following: A pharmaceutical company is developing an allergy medicine 

comprised of several minerals. The company is working with 12 different laboratories to study 

the effect that each individual mineral has on headaches. Each laboratory is responsible for 

investigating the effects of one mineral.  

Now imagine that you work for the pharmaceutical company. It is your job to evaluate 

the results of each study and determine what effect each mineral has on headaches.  
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