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Abstract 

The killifish, Fundulus heteroclitus, is a common fish model in aquatic 

toxicology. However, little is known in this organism about how endocrine disrupting 

compounds, (EDCs) including polycyclic aromatic hydrocarbons (PAHs), impact the 

reproductive status from a molecular standpoint. The objective of this project is to apply 

high throughput sequencing to F. heteroclitus testes to examine the molecular 

mechanisms that impair reproduction when exposed to crude oil. First, a crude oil 

exposure experiment was conducted. Following exposure, semi-quantitative PCR was 

performed to detect changes in gene expression of the following genes known to respond 

to EDCs: gonadal aromatase (CYP19a), vitellogenin (VTG), and cytochrome P450 1A 

(CYP1A). Excitation-Emission matrix (EEM) spectroscopy was performed to verify PAH 

exposure in the gonads. Killifish that demonstrated endocrine disruption along with 

verified PAH exposure were selected for sequencing. Illumina NextSeq 500 technology 

was applied to three experimental groups to determine genes and pathways turned on 

during sexual activation and disrupted by crude oil exposure: 1) an exposed spawning 

male gavaged with crude oil collected from the DeepWater Horizon oil rig, 2) a control 

spawning male gavaged with fish oil, and 3) a control non-spawning male.  The de novo 

assembler, Bridger, was used to assemble the sequence reads. The Trinotate pipeline was 

used to annotate the resulting genes and determine differential gene expression among the 

three transcriptomes. The Trinotate annotation and differential expression analysis was 

validated by qPCR of select genes. Heatmaps displayed genes that were turned on, off, or 

had at minimum a two-fold change in expression. The Cytoscape plug-in ClueGO created 



xi 
 

a functionally organized GO/pathway term network to visualize gene interactions. Genes 

found within the “Regulation of Androgen Receptor Signaling Pathway” node was shown 

to be impacted by GO terms associated with “Response to Heat” and “Apoptosis”. 

Candidate biomarkers were found associated with apoptosis (EP300; histone 

acetyltransferase p300, SIRT1; Sirtuin 1 and SMARCA4; Transcription activator BRG1), 

impaired spermatogenesis (SMARCA4 and DNAJA1; heat shock protein family (Hsp40) 

member A1,) and suppressed androgen receptor transcriptional activation (HDAC6; 

(Histone deacetylase 6 and PTGES3; Prostaglandin E Synthase 3). Overall, this research 

is the first to assign functional annotations to the testes transcriptomes in killifish, 

resulting in the most comprehensive reproductive information available for the species to 

date. This transcriptomic data can provide the ground work for studying the killifish’s 

population dynamics, biomonitoring, and reproductive health. Additionally, this data can 

be utilized in comparative studies in other fish models to further enhance breeding 

programs and evolutionary studies.  
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Introduction  

Crude oil is one of the major pollutants in the marine environment. With the 

advancing global economy, the increased demand for crude oil has promoted the fast 

growth of offshore oil exploration and ocean transportation. The political will to make the 

U.S. more energy independent is likely to intensify crude oil production and thereby 

enlarge the number of impacted areas and intensify existing levels of contaminants. 

Accidental oil spills have been known to devastate the environment and affect the local 

economy as recently exemplified by the DeepWater Horizon oil spill in the Gulf of 

Mexico in 2010. Since spilled oil can go anywhere because of the tides and wind, 

increasing incidents of oil spills from oil exploration, production, and transportation 

activities can result in oil pollution all over the world. This oil pollution may influence 

population levels of marine species by negatively affecting their development, growth 

and reproduction. It is noteworthy that the accumulation of oil contaminants in various 

aquatic species not only debases the quality of the commercial aquatic products but also 

could affect human health if consumed.  

In general, spills of large quantities of crude oil have the potential to cause severe 

short and long-term damage to marine ecosystems. The most visible and immediate 

short-term impact of oil on affected wildlife is its ability to adhere to the organisms, 

especially after the sludge washes ashore. The animals can die due to suffocation, 

ingesting the oil, or inhaling the toxic fumes (Peterson et al., 2001). In contrast to the 

short-term effects of crude oil spills, long-term biological impacts are more complicated 
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and significant at both the population and ecosystem level. This is because some 

components of the oil do not degrade quickly and therefore act through various toxic 

mechanisms that do not result in immediate or obvious mortality (Peterson et al., 2001; 

Peterson et al., 2003). There is evidence that 7–10 years after an oil spill, hydrocarbon 

exposure is correlated with reduced survival of some near shore vertebrate species 

including sea otters (Monson et al., 2000, Bodkin et al., 2002), sea ducks (Trust et al., 

2000, Esler et al., 2000, Esler et al., 2002), and pigeon guillemots (Golet et al., 2002, 

Seiser et al., 2000). In 2001, a survey of formerly heavily/moderately oiled beaches 

within Prince William Sound estimates that approximately 60,000 L of Exxon Valdez 

crude oil remained in the intertidal zone since the 1989 oil spill, including deposits a few 

centimeters below the surface that were often still fluid and toxic (Short et al., 2003). The 

initial oil from the spill could be underneath rocks and boulders which allows it to persist 

for over ten years at study sites on Gulf of Alaska shores distant from the spill’s origin 

(Irvine et al., 2006). Four years after the Prestige oil spill off the coast of Galicia in 2002, 

toxic compounds present in the oil such as polycyclic aromatic hydrocarbons (PAHs) are 

still being detected in the marine food chain (Laffon et al., 2006, Morales-Caselles et al., 

2006, Ordás et al., 2007). The difficulty of easily containing and cleaning up oil spills 

leads to long exposure periods that may have many adverse genetic ramifications on 

aquatic wildlife within an ecosystem.  

Exposure to crude oil and its components can potentially damage fishery 

resources. This occurs by affecting population densities of commercial fish species as 

well as species on which they feed. Population densities can be impacted when survival 
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and reproduction of oil-exposed fish are compromised. Several laboratory studies have 

documented oil-related declines in reproductive parameters in marine teleosts such as 

alterations in levels of reproductive hormones, inhibited gonadal development, and 

reduced egg and larval viability (Idler et al., 1995, Thomas et al., 1995, Truscott et al., 

1992). Both crude oil and weathered oil byproducts are highly toxic to fish eggs and 

larvae (Incardona et al., 2004). Oil contamination may cause increased mortality of eggs 

and larvae even at low concentrations (McGurk et al. 1996). Exposure to oil and oil 

byproducts also leads to a range of sub-lethal effects on fish eggs and larvae, including 

premature hatching (Carls et al., 1999), morphological malformations (Hose et al., 1996) 

and genetic damage (Norcross et al., 1996). Low levels of dissolved oil hydrocarbons 

may also slow larval growth rates and affect their swimming ability and feeding 

behaviors (Tilseth et al., 1984). Mortality rates on malformed, premature or slow-

growing larvae are likely to be extremely high (Carls et al., 1999). 

PAHs are  primary toxic constituents in crude oil (Whitehead et al. 2011). 

Research shows that crude oil exposure can be detected by measuring PAHs in fish 

tissues (Kreitsberg et al., 2010, Murawski et al., 2014) and bile (Lin et al., 1994, Fuentes-

Rios et al., 2005). PAHs in contaminated aquatic environments enter the gastrointestinal 

tract through the diet. Here they are absorbed into the blood stream and passed into the 

hepatic portal vein of the liver where they are metabolized by the cytochrome P450 

enzyme systems and excreted into bile and urine (Bentivegna et al., 2016). Fish under 

laboratory conditions have previously been shown capable of metabolizing and 
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eliminating PAHs within a few days following a single dose exposure (Varanasi et al., 

1989).  

PAHs are fluorescent aromatic compounds (FACs) that can be detected using 

synchronous fluorescence scanning (Lin et al., 1994), fixed wavelength fluorescence 

(Aas et al., 2000b), high performance liquid chromatography with fluorescence detection 

(HPLC-F) (Kreitsberg et al., 2010, Rey-Salgueiro et al., 2009), and Excitation-Emission 

Matrix(EEM) spectroscopy (Elcoro et al., 2014, Ferretto et al., 2014). However, these 

fluorescent methods are unable to differentiate the existence of one specific PAH from 

another due to the overlapping excitation/emission wavelengths used for detecting most 

FACs (Bentivegna et al., 2016). Therefore, “PAH-like” compounds including PAH 

metabolites typically found in natural samples are detected using the aforementioned 

FACs methods (Ariese et al., 1993). This is an advantage over the more reference driven 

method of gas chromatography-mass spectroscopy (GCMS) that detects only limited 

types of PAHs (Bentivegna et al., 2016).  

PAHs are known to be endocrine disrupting compounds (EDC) (Whitehead et al., 

2011). Chemicals that are able to cause endocrine disruption have one of three 

characteristics: they are persistent and bioaccumulative, are present at high 

concentrations, or they are constantly entering the environment (Tyler et al., 1998). EDCs 

have been found in freshwater, estuarine, and marine environments, raising the 

possibilities that EDCs can threaten population sustainability over time and disrupt those 

ecosystems (Mills et al., 2005). EDCs in aquatic environments are readily available to 
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fish through various routes that include aquatic respiration, osmoregulation, and maternal 

transfer of contaminants in lipid reserves of eggs (Van Der Kraack et al., 2001). Ingestion 

of contaminated food and skin contact with contaminated sediments are also exposure 

routes (Mills et al., 2005).  

EDCs exert their effects in many ways by disrupting the natural hormone/receptor 

relationships involved in reproduction. For instance, they can mimic endogenous 

hormones by binding to hormone receptors and influencing cell signaling pathways, they 

can antagonize hormonal binding to hormone receptors, they also can alter the production 

and breakdown of natural hormones, and EDCs can modify hormone receptor levels 

(Sonnenschein and Soto, 1998; Matozzo et al,. 2008). EDCs in particular may interfere 

negatively with the hypothalamus-pituitary-gonad-liver (HPGL) reproductive axis of 

organisms (Neubert et al., 1997). 

In the hypothalamus, the KiSS (Kisspeptin) system is believed to be the mediating 

link to the response between environmental cues and metabolic signals that initiates the 

HPGL reproductive axis to induce oogenesis in female fish (Sempere et al., 2006). This 

system consists of the G-coupled protein receptor 54 (GPR54) that resides on neurons 

and produces gonadotrophin-releasing hormone (GnRH) along with its neuropeptide 

ligand encoded by the Kiss1 gene, kisspeptin (Zohar et al., 2010). Kiss1 is regulated by 

photoperiods, seasons in seasonally breeding animals, and metabolic factors that relay 

metabolic signals to the reproductive axis (Popa et al., 2008). When positively regulated 

by these factors, kisspeptin excites GnRH neurons by acting on GPR54 and causes the 
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release of GnRH. This results in stimulating the pituitary gland to secrete gonadotrophic 

hormones (GTH) (Popa et al., 2008). 

The pituitary gland is known as the master gland because it controls the activities 

of the other endocrine glands (Davidovici et al., 2008). GTH, the main hormone that the 

pituitary gland releases to control the gonads, can be broken down into the follicle-

stimulating hormone (FSH) and the luteinizing hormone (LH) (Mateos et al., 2002). In 

male fish, LH regulates steroidogenesis by activating LH receptors expressed on Leydig 

cells to stimulate androgen production and FSH regulates spermatogenesis by activating 

FSH receptors on Sertoli cells, respectively (Shulz et al., 2001). 

In female fish, both FSH and LH ensure normal functioning of the ovaries with 

FSH being involved in the initiation of gametogenesis and regulation of gonadal growth 

and LH mainly regulating gonadal maturation and ovulation (Mateos et al., 2002). Once 

oogenesis is triggered, the pituitary gland will secrete these gonadotrophic hormones into 

the blood stream where they are carried to the ovaries to induce oocyte growth and 

ovulation (Nicolas et al., 1999).  

GTH released from the pituitary glands also initiates vitellogenesis, the process of 

yolk deposition in oocytes that will provide energy reserves for the embryonic 

development of the offspring (Matozzo et al., 2008). This occurs when GTH released 

from the pituitary glands signals the follicle cells to synthesize estrogens (primarily 17β-

estradiol (E2)) (Bemanian et al., 2004). Another source of 17β-estradiol for the induction 

of vitellogenesis is derived from cytochrome P450 aromatase (CYP19), which converts 
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androgens into estrogens (Cheshenko et al., 2008). The 17β-estradiol is released into the 

blood and transported into the liver where it enters the hepatocytes by diffusion and binds 

with high affinity to the estrogen receptor alpha (ERα) (Bemanian et al., 2004). The 

activated ERα triggers the expression of vitellogenin (VTG) along with its own gene 

expression (Bemanian et al., 2004). The VTG is transported via the vascular system to 

the ovary and incorporated by receptor-mediated endocytosis into yolk platelets under 

gonadotrophin promotion (Nicolas et al., 1998). The VTG is then cleaved to form the 

phosphorus containing phosvitin protein and two lipid containing proteins, lipovitellins I 

and II (Davail et al., 1998). 

Any factor causing an impairment of the reproductive HPGL axis, vitellogenic 

cycle, or steroidogenesis could have detrimental influences on oogenesis, 

spermatogenesis, fecundity, viable embryos, hatching rate, and larval survival (Anderson 

et al., 1996; Nicolas et al., 1998). Negative effects in any of these circumstances would 

lead to reproductive deficits in fish populations. Because of these actions, increasing 

attention has been given to evaluating adverse effects on reproduction and development 

caused by EDCs in aquatic environments. 

Many studies have shown that PAHs can have a negative effect on vitellogenesis 

in fish (Nicholas, 1999). A biomarker to assess a population’s vitellogenic reproductive 

health is the induction of cytochrome P4501A (CYP1A) in the liver. Aryl hydrocarbon 

receptor (AHR) ligands, such as halogenated aromatic hydrocarbons and PAHs, are 

capable of inducing CYP1A expression while disrupting 17β-estradiol-induced 
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expression of the VTG and reducing ERα levels (Bemanian et al., 2004). This is 

supported by a study by Bugel et al (2010) that showed an inverse relationship between 

hepatic CYP1A protein and hepatic VTG mRNA expression in F. heteroclitus. This 

suggests a possible link between AhR agonist exposure and vitellogenesis. It is also 

known that CYP1A induction can increase the metabolism of estrogens and the lack of 

estrogen levels correlated to the lack of VTG (Navas et al, 2000). Research in rainbow 

trout (Oncorhynchus mykiss) shows that PAHs are able to exert their antiestrogenic 

activity by binding to AhR in cultured hepatocytes and inhibiting estradiol-regulated 

VTG synthesis (Navas et al., 2000). Another study that showed that PAHs can induce 

CYP1A expression was done by Meyer (2002). This study revealed that CYP1A protein 

expression was induced by the PAH-type, CYP1A inducer β-naphthoflavone by utilizing 

killifish, F. heteroclitus. Debunsky (2013) found that killifish exposed to the oil from the 

Deepwater Horizon oil spill had divergent gene expression in the liver and gill tissue 

coincident with the arrival of contaminating oil. Changes in expression included the up-

regulation of cytochrome P4501A (CYP1A) protein in gill, liver, intestine and head 

kidney for over one year following peak landfall of oil (August, 2011) compared to fish 

collected from reference sites. Their results suggest that crude oil exposure could alter 

vitellogenesis due to the presence of CYP1A agonists such as PAHs. 

EDCs can also exert negative effects on cytochrome P450 19a (CYP19a) 

expression. Inhibiting expression of CYP19a limits the conversion of androgens into 17β-

estradiol that is required for the induction of vitellogenesis. The study by Patel (2006) 

shows that female killifish exposed to the PAH, benzo(a)pyrene (BaP), in a water-borne 
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study for 15 days experienced inhibited ovarian aromatase (CYP19a) activity (Patel et al., 

2006). 

A great laboratory model organism for evaluating effects of oil exposure on 

reproductive health is the Atlantic killifish (Fundulus heteroclitus). Killifish are a 

promising biosensor for aquatic pollution because they are a commonly studied sentinel 

teleost species (Burnett et al., 2007), have a narrow home range and high site fidelity 

(Teo et al., 2003), are sensitive to organic pollutants (Van Veld et al., 2008), and can be 

maintained in a laboratory setting. There is evidence that PAH exposure results in 

reproductive and developmental deficits in killifish collected from PAH-impacted sites 

(reviewed in Nicolas, 1999). The reported effects reviewed by Nicolas include the 

reduction in circulating hormones and plasma VTG, estrogenic and antiestrogenic effects, 

retardation of oocyte maturation and reduction of reproductive success. (Nicolas, 1999). 

Gulf killifish (Fundulus grandis) were used as a model species to investigate the 

consequences of the Deepwater Horizon oil spill because they are among the most 

abundant vertebrate animals in the Gulf of Mexico-exposed marshes (Whitehead et al, 

2011). Sub-lethal effects detected at the molecular level were used to predict long term 

population-level impacts of oil pollution. Genome expression profiles, using microarrays 

and RNAseq, were used to characterize the killifish liver, which is the primary tissue for 

metabolism of toxic oil constituents (Whitehead et al. 2011). Tissue morphology and 

expression of CYP1A protein were characterized for gills along with exposing 

developing embryos to field-collected water samples to document bioavailability and 

bioactivity of oil contaminants for the early life stages (Whitehead et al. 2011). The study 
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found that biologically relevant sub-lethal exposures to crude oil can cause alterations in 

genome expression and tissue morphology suggestive of physiological impairment 

lasting for over two months after initial exposure (Whitehead et al. 2011). 

To date, no research has been presented on the network analysis of the killifish 

testes transcriptomes to identify gene modules and candidate genes associated with testis-

derived reproductive disruption from the mechanistic point of view. Key genes associated 

with disrupted physiological function of gonads need to be identified by comparing 

transcriptomes of oil exposed groups versus control groups under laboratory conditions. 

Modern biomarkers need to be developed in order to protect our natural resources and to 

assess natural resource damage caused by oil spills. Those biomarkers need to link 

molecular responses to population level effects. In doing so, impaired reproductive 

responses will be associated with detectable molecular responses.   

Over the past decade, significant progress has been made in genome wide gene 

expression profiling by the development and application of differential display (Liang et 

al, 1992; Shen et al., 2009), RNA fingerprinting (McClelland et al., 1995), serial analysis 

of gene expression (SAGE) (Velculescu et al., 1995), suppression subtraction 

hybridization (Brulle et al., 2012), cDNA AFLP (Breyne et al., 2003), and others. These 

technologies have identified and characterized different gene functions, different signal 

pathways, and have validated drug target interactions. However, each of the above 

techniques has disadvantages. For instance, high false positive rates, being time and labor 

intensive, and most importantly these techniques identify genes with short fragment sizes 
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that severely limit downstream efforts of reliable annotation (Debouck et al., 1995). 

Microarrays are another popular gene expression profiling technique that has several 

limitations, such as: dependence upon existing knowledge about genome sequences; high 

background levels owing to cross-hybridization; and a limited dynamic range of detection 

owing to both background and saturation of signals (Wang et al., 2010). Moreover, 

comparing expression levels across different experiments is often difficult and can 

require complicated normalization methods (Wang et al., 2010). In gene-expression 

studies, microarrays are now being replaced by Next Generation Sequencing (NGS) 

based methods (Metzker et al., 2010). In contrast to microarray methods, NGS has clear 

advantages and is expected to revolutionize the manner in which eukaryotic 

transcriptomes are analyzed (Cloonan et. al, 2008; Morozova et al., 2008; Ozsolak et al., 

2010; Wang et al., 2009). This project will utilize NGS to detect key genes involved in 

mechanisms of gonadal disruption in killifish.  

NGS techniques are new “transcriptome’’ methods of gene expression analysis 

that provide general representation of all transcripts (i.e., mRNAs) expressed in particular 

cells or organs under particular conditions and exposure times. NGS reduces the cost of 

DNA sequencing by over two orders of magnitude, making global transcriptome analysis 

inexpensive, routine and widespread (Shendure et al., 2008). NGS allows researchers to 

accurately probe the current state of a transcriptome and assess many genetically 

important issues, such as; gene expression levels, differential splicing events, and allele-

specific gene expression (Shen et al., 2011). NGS has a clear advantage over older gene 

expression technologies (e.g., microarrays, etc.) in that it is not limited to experimental 
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systems having well characterized genomes or transcript sequence libraries (Shen et al., 

2011). This positions NGS as an important technique that can provide new opportunities 

for better characterization of experimental systems and species for which a whole 

genome sequence is lacking or unavailable (Feldmeyer et al., 2011; Wang et al., 2010; 

Xiang et al., 2010).  

Starting in 2005, a variety of massively parallel sequencing instruments such as 

the Roche/454, the Life Technologies SOLiD, and the Illumina platforms were used to 

sequence human and model organism genomes. This method has already been applied to 

a number of model organisms, such as yeast, Arabidopsis, Drosophila, mouse, and human 

(Graveley et al., 2010; Marioni et al., 2008; Morin et al., 2008; Mortazavi et al., 2008; 

Nagalakshmi et al., 2008). Only a few studies have used NGS technologies to research 

the impact of environmental contaminants in aquatic organisms (Debunsky et al., 2013 

and Yednock et al., 2015). 

NGS technologies have offered unprecedented opportunities to obtain genetic 

information for non-model organisms with little or no molecular information available 

(Gordo et al., 2012) This increasingly accessible technology provides an efficient and 

cost-effective approach for analyzing the transcriptome of non-model organisms that lack 

a fully-sequenced genome (Fan et al., 2013; Garg et al., 2011; Sharma et al., 2014). It has 

been employed to identify novel transcriptome sequences, single nucleotide 

polymorphisms (SNPs), simple sequence repeats (SSRs), splicing variants, transcript 

isoforms, new large intergenic noncoding RNAs, and relative levels of transcript 
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expressions (Gordo et al., 2012; Fan et al., 2013; Sharma et al., 2014; Nandety et al., 

2013). With the arrival of NGS technologies, the number of publications characterizing 

de novo assemblies for non-model organisms have steadily been on the rise (Ashrafi et 

al., 2012). 

De novo transcriptome assembly is performed by taking the enormous amount of 

short read sequences produced by NGS and overlapping them to form contiguous 

sequences (contigs) (Haznedarogulu et al., 2012). The quality of the assembly output is 

reliant on the user designated k-mer value defined as the sequence overlap between two 

reads forming the contig (Haznedarogulu et al., 2012; Moreton et al., 2014; Surget-Groba 

et al., 2010; Robertson et al., 2010). Low k-mer values have a tendency to recover less 

abundant transcripts, while producing a large amount of contigs, with a number of them 

highly fragmented due to sequencing errors and lack of overlap (Surget-Groba et al., 

2010; Chopra et al., 2014). High k-mer values will produce a more contiguous assembly 

consisting of high coverage transcripts and splice variants. However, the assembly will 

contain fewer contigs leading to lower transcript representation (Surget-Groba et al., 

2010; Chopra et al., 2014). Therefore, utilizing a single k-mer approach when performing 

a de novo assembly can result in loss of relevant biological information due to the lack of 

transcript diversity (Chopra et al., 2014). A logical approach to resolve this dilemma is to 

cluster multiple single k-mer assembles together in order to take advantage of the 

characteristics of both the low and high k-mer values and thereby improve the accuracy 

of the assembly (Haznedarogulu et al., 2012; Moreton et al., 2014; Surget-Groba et al., 

2010). 
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The number of de novo transcriptome programs developed for assembly of short 

sequence reads has increased within the past few years. In 2010, Trans-AByss was 

reported to have the ability to merge multiple individual k-mer assemblies, allowing the 

transcriptome to be represented by wide levels of transcript expression (Robertson et al., 

2010). In 2011, Trinity was reported to be able to fully reconstruct a large fraction of 

transcripts with low base error rates and have the ability to report alternative splice 

isoforms (Grabherr et al., 2011). Trinity is currently regarded to be the best single k-mer 

assembler (He et al., 2015). In 2012, Oases was reported to improve significantly on the 

Trans-ABySS and Trinity assemblers by merging the use of multiple k-mers presented in 

Trans-ABySS with a topological analysis similar to that presented by Trinity (Shulz et 

al., 2012). In 2014, SOAPdenovo-Trans was reported to be able to perform multiple 

individual k-mer assemblies and provide higher contiguity, lower redundancy and faster 

execution when compared to Trinity and Oases (Xie et al., 2014). All of these assemblers 

are founded on the de Bruijn graph-based assembly method to which programmers add 

their own algorithms (Robertson et al., 2010; Grabherr et al., 2011;Shulz et al., 2012; Xie 

et al., 2014). In 2015, Bridger, which employs a new de novo assembly method that does 

not construct de Bruijn graphs, was created (Chang et al., 2015). This assembler uses a 

rigorous mathematical model, called the minimum path cover, to construct splice graphs 

that are used to build compatibility graphs for transcriptome reconstruction from short 

RNA-seq reads (Chang et al., 2015). This multiple k-mer assembler aims to build a 

bridge between the key concepts of two popular assemblers, the reference-based 

assembler, Cufflinks (Trapnell et al., 2010), and the de novo assembler, Trinity (Chang et 
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al., 2015). Given the number of programs available, there is a need for more definitive 

information on what assemblers and parameters work best for constructing a de novo 

transcriptome (Moreton et al., 2014; Zhao et al., 2011).  

Much effort has been dedicated towards improving the capabilities of de novo 

assembly software. However, methods to evaluate the assembler’s performance are still a 

few steps behind. For example, a common approach to assess genome assemblies is to 

evaluate statistics such as the number of contigs, the amount of contigs over 1,000 bps, 

and the N50 value. The N50 value is defined as the length of the largest contig from all 

the contigs ranked smallest to largest that represents 50% of the assembly length (Li et 

al., 2014; Baker 2012). However, these metrics are also routinely used to evaluate the 

quality of de novo transcriptome assemblies even though they may be misleading 

regarding their accuracy (Li et al., 2014; Baker 2012; O’Neil et al., 2013). Evaluating 

mRNA characteristics such as the percentage of assembled full length transcripts and the 

number of long open reading frames (ORFs) are other common metrics for evaluating 

transcriptome assemblies (Chopra et al., 2014; He et al., 2015; Nakasugi et al., 2014). A 

novel reference-free evaluation method to assess the quality of transcriptomes is Detonate 

RSEM-EVAL (Li et al., 2014). This program produces a statistically principled 

evaluation score using multiple factors, such as the compactness of the assembly and its 

support from the RNA-Seq reads used to create it (Li et al., 2014). 

Annotation-based metrics describe the percentage of sequences within an 

assembly that match protein sequences found in a related species or curated database 
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(Schliesky et al., 2012). An accurate assembly should contain a high percentage of these 

conserved proteins while a low percentage reflects mis-assemblies. These types of 

metrics can be challenging for non-model species that do not have an annotated 

phylogenetically related species to which it can be aligned. If the evolutionary distance 

between the two species is too great, then orthologs may have undergone nucleotide 

changes making alignments less likely to occur (O’Neil et al., 2013). A database to gauge 

the performance of an assembly strategy in the absence of a well annotated 

phylogenetically related species is the CEGMA (Core Eukaryotic Genes Mapping 

Approach) database (Parra et al., 2007). This is a manually curated database that contains 

248 core proteins present in a wide range of taxa (Parra et al., 2007). The same approach 

can be achieved by utilizing the manually curated BUSCO (Benchmarking Universal 

Single-Copy Orthologs) protein set for the quantitative assessment of transcriptome 

assembly and annotation completeness (Fan et al., 2013). Using this database, assemblies 

are matched to 3,023 vertebrate genes and results return the percentage of unaligned 

sequences. Annotation metrics are useful for assessing both genome and transcriptome 

assemblies. 

Evaluation metrics are important for assessing the quality of genome and 

transcriptome assemblies. Unfortunately, there is a lack of consensus as to which 

evaluation metrics work best let alone how many of them to use. For example, Chropra et 

al. performed a comparison study using peanut (Arachis spp.) RNA-Seq data. Assemblies 

were evaluated based on the N50 length, average contig length, number of contigs, the 

novelty of each assembly using the Mummer tool, the accuracy determined by RMBT, 
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and the continuity by estimating the number of full length transcripts (Chopra et al., 

2014). Moreton et al. relied on the RMBT and CEGMA percentages as well as the N50 

length, the number of transcripts, and the number of transcripts >1kb when evaluating 

different assemblies of the duck (Amas platyrhynchos) (Moreton et al., 2014). He et al. 

assessed the assemblies of sweet potato fungus (Trametes gallica) and wild rice (Oryza 

meyeriana) based on N50 length, average contig length, number of contigs > 1,000 bps, 

as well as their ORFs and percent annotation using BLASTX results against 

phylogenetically related species (He et al., 2015). More information on which evaluation 

metrics best predict the quality of de novo transcriptome assemblies would help establish 

“best practices” particularly for less experienced users. Therefore, this study presented 

compared assembly programs, k-mer strategies, and various metrics for determining de 

novo transcriptome assembly quality. Based on the eleven evaluation metrics, it was 

found that the product of those assemblies was more influenced by the assembler itself 

than the k-mer strategy. Overall, Bridger performed more often within the top three of 

each evaluation metric than the de Bruijn graph-based programs for the de novo 

transcriptome assembly of the killifish RNA-Seq reads. 

The specific hypothesis of the proposed research is that crude oil, which contains 

PAHs, is responsible for gonadal steriodogenesis disruption leading to decreased 

reproductive health and success in killifish. This proposed research will focus on utilizing 

NGS to profile the global expression patterns in the testis transcriptome of F. heteroclitus 

in response to crude oil exposure in a laboratory setting. The outcome of this 

investigation will identify gene modules and candidate genes associated with disrupted 
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steriodogenesis that causes reproductive failure at the functional genomic level. The NGS 

data will be analyzed to investigate the molecular mechanisms of PAH-mediated 

inhibition of endocrine and stress related responses and to generate potential biomarkers 

of reproductive stress from crude oil exposure. The NGS data will also be used to study 

the differences in gene expression of sexually active and sexually non-active testis.  

The first aim involved determining exposure times at which the reproductive 

system of F. heteroclitus responds to crude oil. Wild fish were exposed by using the 

gavage method and endocrine disruption was detected over time using quantitative PCR 

and established biomarkers: CYP1A, CYP19a, and VTG. Exposure to PAHs was verified 

using EEMs using bile. Based on these outcomes, fish were selected for transcriptome 

analysis. 

The second aim was to generate transcriptomes of the selected gonads of male 

and female fish. These groups consisted of 1) an exposed spawning male and exposed 

vitellogenic female gavaged with crude oil collected from the DeepWater Horizon oil rig 

prior to the accident; 2) a control spawning male and vitellogenic female gavaged with 

fish oil; 3) a control non-sexually active male and female. The Illumina NextSeq 500 

sequencing was performed by the Waksman Genomics Facility.   

The third aim was to determine the assembly method for the transcriptomes. A de 

novo assembly comparison study was performed to investigate which assembly program 

(Trinity, Bridger, Oases/Velvet, or SOAPdenovo-Trans) and k-mer strategy would be 

best for the de novo transcriptome assembly of the killifish reads based on eleven 
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evaluation metrics. This analysis was performed on a non-sexually active male killifish. 

Based on the evaluation metrics performed, it was determined that the Bridger assembly 

was able to construct the best assembly of the testis transcriptome in F. heteroclitus. 

Therefore, Bridger was used to construct a reference transcriptome with a multi k-mer 

approach. The paired end raw data files from each of the eight killifish gonads were 

interlaced to form the files used for assembly and mapping. 

The fourth aim was to use various bioinformatics tools to determine differential 

gene expression levels in the individual transcriptomes and to visualize Gene Ontology 

(GO) interactions associated with crude oil exposure. Genes associated with endocrine 

disruption and stress responses were of particular interest. Genes from the GO categories 

with a log fold change of at least +/- 2 were incorporated into a Cytoscape network to 

visualize the complex pathways and integrated activities of the genes. Heatmaps were 

generated to display the individual genes within the Cytoscape pathways of interest.  

The fifth aim was to validate the annotated transcriptome and expression analysis. 

This was accomplished by Sanger sequencing and qPCR of selected PCR products. 

Overall, this project utilizing a transcriptome approach to identify new candidate 

biomarkers related to endocrine disruption caused by crude oil exposure. This data will 

enhance the capabilities for studying the killifish’s population dynamics, biomonitoring, 

and reproductive health to provide benchmarks for comparative studies for other fish 

models.  
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Materials and Methods 

Fish collection  

Fish identified as Atlantic killifish (Fundulus heteroclitus) were collected from 

Tuckerton, NJ (Little Sheepshead Creek) using baited minnow traps on July 12th, 2013. 

The authority who issued the permission for capturing the killifish was The New Jersey 

Department of Environmental Protection; Division of Fish and Wildlife (Permit #1125). 

The vertebrate work done in this study was approved by The Rutgers University’s 

Institutional Animal Care and Use Committee (IACUC) (Protocol #08-025). In all 

instances the fish were alive when captured, and capture methods followed approved 

animal handling protocols. The fish were transported immediately back to Rutgers 

University in aerated containers containing water from the collection site to reduce stress.  

 

The Gavage Method 

The fish were acclimated to laboratory conditions for two weeks. The control and 

exposure group were maintained in two different tanks. The gavage method was 

employed to expose the control group with 25 µL of 100% fish oil while the treatment 

group received 25 µL of 50% fish oil and 50% crude oil. The fish oil was obtained 

directly from DayBrook Fisheries (http://www.daybrook.com/) and was produced 

commercially from Gulf menhaden collected in 2009. The crude oil was Macondo 252 

(MC252) collected from the DeepWater Horizon oil rig prior to the accident and other oil 

rigs tapped into the same crude oil source. Both the control and exposure groups were 

dosed for three consecutive days, Day 0 through Day 2 as seen in Table 1. 
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Table 1. Experimental outline establishing exposure times of crude oil and sacrificing 

schedule. 

Schedule Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Start 

Time 

9:00 

AM 

9:00 

AM 

9:00 

AM 

9:00 

AM 

   9:00 

AM 

Sacrifice 

time 

Time 

Zero 

Day 1  Day 3    Day 7 

Dose 

time 

Dose Dose Dose      

All images, figures, and tables in this dissertation are generated by the author unless 

otherwise cited. 
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Concentration-Response Experiment followed by Euthanization of Sexually Active Fish 

Sexually active killifish were sacrificed on Day 0, Day 1, Day 3, and Day 7 by 

euthanizing them with an overdose of MS–222 (tricaine methanesulphonate) followed by 

spinal cord dislocation as seen in Table 1. Following the sacrificing, gonads, liver, and 

gall bladder were collected from each individual fish. Gonads and livers were divided 

into two parts. One part was used for PAH detection using EEMs. The second part was 

stored in RNAlater (Qiagen) at -20oC prior to RNA extraction. The bile from the gall 

bladder was subjected to EEMs analysis only to determine PAH exposure. Measurements 

included sex, weight (g) and length (cm) fish. 

 

Non-Sexually Active Fish 

Non-sexually active killifish were housed under laboratory conditions at Rutgers 

University for five months before they were sacrificed on December 6th, 2013 with an 

overdose of MS-222 followed by spinal cord dislocation. Following the sacrificing, 

gonads, liver, and gall bladder were collected from each individual fish. As above, 

gonads and livers were divided into two parts, one for EEMs and one for RNA, and bile 

from the gall bladders was subjected to EEMs. Measurements included sex, weight (g) 

and length (cm) fish. 

 

Extraction of PAHs from gonads and gall bladders 

Intact gall bladders were used for extraction of PAHs. The gall bladders were 

individually homogenized mechanically in 500 µL of 75% ethanol. After homogenizing, 
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500 µL of 75% ethanol was added to the homogenate. The samples were vortexed for 1 

minute continuously in order to extract PAHs then centrifuged for 20 minutes at 13,000 

rpms to remove the tissues. After centrifugation, the supernatant was pipetted into 

another eppendorf tube for fluorescence analysis.  

 

Fluorescence Analysis 

Gall bladder supernatants were analyzed using a Flourolog-3 Spectroflourometer 

(Horiba Jobin Yvon, Inc., Edison, NJ), equipped with single excitation and emission 

monochromators and non-ozone producing 450 W xenon arc lamp source. A Hamamatsu 

R928 side on photomultiplier tube was used to collect the emitted photons, and yielded a 

signal in photon counts per second (CPS). Samples were analyzed in 1 mL fused silica 

cuvettes with 1 cm excitation pathlengths. The excitation scans were from 260 to 400 nm 

and emission scans were from 320 to 480 nm. Lamp intensity variations were corrected 

using a photodiode reference signal (R1/μA). The fluorescence intensity values (color on 

the contour maps) were represented as photon labeled counts per second per microamps 

(CPS/μA). The Fluorolog 3 provided 3D contour maps showing excitation scans for 

multiple emission wavelengths as heatmaps with the red color representing high intensity 

and blue color representing low intensity fluorescence. The contour map separated 

fluorescent compounds based on their optimal excitation and emission wavelengths. 

Figures of contour maps were generated by SigmaPlot version 13. 

RNA isolation 
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Total RNA was extracted from the testes using TRIzol® Kit (Invitrogen™) 

following the manufacturer’s instructions. Potential genomic DNA contamination in the 

RNA sample was removed by DNase I digestion (Ambion, Inc.). Using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Inc.), the RNA was quantified by 

measuring the absorbance at 260 nm. The purity of the RNA sample was assessed at an 

absorbance ratio of 260/280 and the integrity of the total RNA was determined by gel 

electrophoresis separating the samples on a 0.7% agarose gel stained with ethidium 

bromide (data not shown).  

 

RT-PCR and PCR 

Reverse Transcription-PCR was performed using the DNase free RNA as a 

template and oligo-dt primers to synthesize the cDNA (Applied Biosystems, Foster City, 

CA). The cDNA was used as a template to amplify genes of interest with PCR. Genes 

targeted for quantification included Beta Actin, CYP1A, CYP19a and VTG. PCR 

products were produced using a Multi Gene II (Labnet International, NC). Primer sets for 

these genes have been established along with their expected product size (Bugel et al, 

2010) as seen in Table 2. The PCR reaction for all four genes was initiated with 

denaturation at 94 °C for 3 minutes, followed by 35 amplification cycles at 94 °C for 15 

seconds for denaturing, 60 °C for 30 seconds for annealing, and 72 °C  for 1 minute for 

elongation. The PCR product size was confirmed by separating them on a 2% agarose gel 

stained with ethidium bromide. To calculate the relative concentrations for each gene, 

densitometry analysis was performed using SoftMax Pro 5.3.  
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Table 2: Semi-quantitative PCR primer sequences and expected product size. 

Gene Forward Primer (5′-3’) Reverse Primer (5′-3’) Product 

Size 

CYP1A TGTTGCCAATGTGATCTGTG CGGATGTTGTCCTTGTCAA

A 

258 bp 

VTG AGGATTCGTCCGAACAACAC′ TTTCAGACGGCACTCAGAT

G 

416 bp 

CYP19a ACGAGAAAGAGCTGCTGCTGA

AGA 

TGATGTCCAGCTTATCTGC

CTGCT 

198 bp 

β-actin GCTCTGTGCAGAACAACCACA

CAT 

TAACGCCTCCTTCATCGTT

CCAGT 

136 bp 
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Next Generation Sequencing 

Killifish gonads were selected for transcriptome sequencing based on the results 

from the EEMs data, PCR analysis, and RNA availability. Total RNA (10 µg) was used 

for library construction and subjected to Illumina’s NextSeq 500 sequencing at the 

Waksman Genomics Facility (http://www.waksman.rutgers.edu/genomics/home). This 

resulted in three male and three female transcriptomes: 1) an exposed spawning male and 

vitellogenic female gavaged with crude oil collected from the DeepWater Horizon oil rig 

prior to the accident; 2) a control spawning male and vitellogenic female gavaged with 

fish oil; 3) a control non-spawning male and non- vitellogenic female. 

 

Illumina short-read library construction and sequencing  

Ribosomal depletion and mRNA selection was performed with MicroPolyA purist 

(Ambion). The mRNA was quantified and ribosomal RNA fractions under 2% were 

verified using a BioAnalyzer mRNA Nano Kit (Agilent). The dUTP-strand specific 

cDNA library was made using chemical hydrolysis and the Illumina Ultra Directional 

RNA-seq kit (NEB). Libraries were barcoded with Tru-Seq adaptors and amplified with 

12-15 cycles of PCR (Illumina). Completed RNAseq libraries were quantified using 

Qubit DNA HS, BioAnalyzer High Sensitivity DNA (Invitrogen, Agilent, KAPA). The 

libraries were sequenced using the NextSeq 500 High Output 300 cycles kit, reading 155 

x 155 bp Paired End Sequencing. 

 

Sequence Data Processing 

http://www.waksman.rutgers.edu/genomics/home
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The quality of the raw Illumina sequence reads was initially assessed using 

FastQC v0.10.1 (Andrew 2010). Based on the analysis report, Trimmomatic v0.32 was 

used to remove all the low quality reads with a Phred score below 20 as well as the 

Illumina adapters (Bolger et al., 2014). Contaminating sequences were removed from the 

reads by using Deconseq with the parameters set to 90% of the contig length with an 

identity of 94% (Schmieder et al., 2011). FastQC was performed again to verify the 

integrity of the remaining raw Illumina sequence reads. Upon completion, the quality 

assessed reads were then ready to be used as the input for the various assembly strategies.  

 

De novo transcriptome assembly 

To validate which transcriptome assemblers work the best, RNA from the 

sexually active male killifish was used. Six different assembly strategies were created 

from four different assemblers: Trinity (v2.0.6), Velvet (v1.2.07) and Oases (v0.2.08), 

SOAPdenovo-Trans (v1.03), and Bridger (He et al., 2015; Schulz et al., 2012; Xie et al., 

2014; Chang et al., 2015; Zerbino et al., 2008). The Trinity assembly was the only single 

k-mer assembly. It was run with its default k-mer value of 25. The Bridger, Oases, and 

SOAPdenovo-Trans assemblies were performed with multiple k-mer strategies. Bridger, 

Oases, and SOAPdenovo-Trans used a small multiple k-mer (SMK) strategy consisting of 

the k-mer lengths of 21, 25, 27, 29, 31, and 33. The SMK strategy was based on the 

limitations of the Bridger assembler, which can only use k-mers values up to 33. 

Additionally, Oases and SOAPdenovo-Trans were performed using a large multiple k-

mer (LMK) strategy consisting of k-mer lengths of 25, 35, 45, 55, 65, 75, and 85. All six 
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assembly strategies incorporated the k-mer value of 25 to better compare their 

performances amongst each other. For the multiple k-mer strategies used in the Oases, 

Bridger, and SOAPdenovo-Trans assemblies, all seven individual k-mer assemblies from 

each group were concatenated followed by CD-HIT-EST (v 4.6.1) to further remove the 

redundancy and to cluster the contigs for annotation (Li et al., 2006)  

 

Statistics of Assemblies 

The six different assembly strategies were assessed using typical statistics for the 

evaluation of de novo genome assemblies. These included the total number of contigs 

produced, each assemblies N50 length, and the amount of contigs over 1,000 bps long. 

These statistics were determined using Transrate (v1.0.0 beta3) 

http://hibberdlab.com/transrate/. 

 

RMBT Analysis 

The accuracy of each assembly was assessed by determining the percentage of 

raw reads that could be mapped back to transcripts (RMBT). First, indexes were 

generated using Bowtie2-build (Langmead et al., 2012) Then Bowtie2 (v2.2.5) was used 

to map the reads against each assembly and provide the metric of accuracy, which is the 

percentage of raw reads that align (Langmead et al., 2012)  

 

Phylogenetic Tree Alignments 

http://hibberdlab.com/transrate/
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Another common assessment tool to evaluate the quality of de novo transcriptome 

assemblies is to align the assembled contigs to a well-annotated phylogenetically related 

species. Quality is based on the percentage of contigs that match the protein sequences of 

the related species. To determine which closely related fish genome to use as a reference, 

PhyloT (http://phylot.biobyte.de/contact.html) was used. This program generated a 

phylogenetic tree between killifish and the eleven publically available fish genomes on 

Ensembl: Amazon molly (Poecilia Formosa), Mexican tetra (Astyanax mexicanus), 

Atlantic cod (Gadus morhua), Japanese pufferfish (Takifugu rubripes), medaka (Oryzias 

latipes), southern platyfish (Xiphophorus maculatus), spotted gar (Lepisosteus oculatus), 

stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis) 

Nile tilapia (Oreochromis niloticus), and zebrafish (Danio rerio). This program creates 

trees based on the NCBI taxonomy database, and it was visualized by the web based tool, 

Interactive Tree of Life (v2) (Letunic et al., 2011). Based on the created phylogenetic 

tree, southern platyfish (X. maculatus) and Amazon molly (P. formosa) were shown to be 

the closest relative to killifish. Therefore, the six different assemblies were aligned to the 

Ensembl proteins of southern platyfish and Amazon molly using BLASTX with an E-

value cut-off of 1e-3 to quantify the percentage of previously annotated genes found in 

each assembly. 

 

CEGMA and BUSCO Alignments 

CEGMA (v.2.5) and BUSCO (v1.1) are other reference-based tools for assessing 

the degree of annotation. They were individually employed to quantitate assembly 

http://phylot.biobyte.de/contact.html
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completion based on the percentage of contigs that do or do not (therefore mis-assemble) 

align to highly conserved proteins (Simão et al., 2015).  

  

Full Length Transcript Analysis 

The number of full length transcripts was quantified to further evaluate the 

performance of each assembly by following scripts provided by the Trinity software 

package (http://trinityrnaseq.sourceforge.net/). A modified ‘BLASTX’ script was used to 

calculate each assembly’s alignment coverage to the curator-evaluated database, 

SwissProt. Full-length transcripts were defined in this study by having > 70% alignment 

coverage and > 90% alignment coverage to SwissProt proteins. 

 

Open Reading Frames Analysis 

The presence of long open reading frames (ORFs) was analyzed to determine the 

quality of each assembly by using scripts provided by TransDecoder 

(http://transdecoder.github.io/). BlastP (v 2.2.30+) was used to search the protein 

database SwissProt with an E-value cut-off of 1e-3. ORFs ranging from >799 bps, >999 

bps, and >1,199 bps were determined using gawk to filter the Fasta files by length. 

 

Detonate RSEM-EVAL Score  

DETONATE’s RSEM-EVAL was used to evaluate the quality of the six different 

assemblies. This program offers a reference-free evaluation method that relies only on the 

assembly and the reads used to create it (Baker et al., 2012). 

http://trinityrnaseq.sourceforge.net/
http://transdecoder.github.io/
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Visualization and Analysis of Transcriptome Data 

 The transcriptomes were analyzed using the pipeline displayed in Fig. 1, and each 

step is further described in detail below. Briefly, the Trianotate pipeline was utilized to 

annotate each de novo assembled transcriptome and to determine the differential 

expressed genes between the EXP vs CON groups and the NSA vs CON groups. One of 

the outputs from the differential expression analysis was the global profile of the total 

amount of differentially expressed genes between the EXP vs CON groups and the NSA 

vs CON groups in the form of a volcano plot. GO categories related to crude oil exposure 

and endocrine disruption were used to filter out matching annotated GO terms from each 

transcriptome. The resulting list of genes was further filtered by selecting the 

differentially expressed genes with a log-fold change (LFC) of +/- 2. This list was then 

imported into Cytoscape to visualize molecular interaction networks and biological 

pathways related to endocrine disruption due to the crude oil exposure. Key search terms 

such as “Androgen” were used to search through the large Cytoscape network to find 

interacting clusters of nodes of interest. Genes in these nodes were further analyzed with 

heatmaps to visualize the LFC between treatment groups. Key genes of interest were 

further highlighted with the creation of a concentrated volcano plot. 
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Fig. 1 Transcriptome analysis pipeline employed in this study. 
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Reference Transcriptome Creation 

 A reference transcriptome was created using the assembler Bridger with a multi k-

mer approach. The paired end raw data files from each of the eight killifish were 

individually interlaced to form the files used for assembly and mapping. Bridger was 

used to assemble six different individual transcriptomes for each killifish using the 

following six k-mer lengths: 21, 25, 27, 29, 31, and 33. Each transcriptome derived by a 

single k-mer was concatenated into a representative transcriptome for that particular fish. 

Each of the eight killifish transcriptomes were concatenated into one “raw” Reference 

Transcriptome where CD-HIT-EST and USEARCH were used to cluster together 

similarly constructed contigs with a score of 94% in order to remove the redundancy.  

 

Differential Gene Expression Analysis 

A modified Trinity DGE pipeline was used for expression profiles. Individualized 

raw reads from each transcriptome were aligned to the reference transcriptome using 

STAR (Dobin et al., 2012). The estimated transcript abundance for each transcriptome 

was performed by eXpress (http://bio.math.berkeley.edu/eXpress/overview.html). 

Trinity’s R scripts for edgeR were used to determine DGE using the blind option because 

of the lack of replicates. The EXP group was compared to the CON group and the NSA 

group was compared to the CON group.  

 

Trinotate Database Creation 

http://bio.math.berkeley.edu/eXpress/overview.html


34 
 

The Trinotate (https://trinotate.github.io/) pipeline was used to annotate the 

Reference Transcriptome. Local BLAST databases were created containing SwissProt 

and UniProt90 curated entries. BLASTX and BLASTP were run on the Reference 

Transcriptome against both databases and the output was populated into a sqlite 

boilerplate database of annotated genes. Additional searches using PFAM, GO, SignalP, 

tmHMM, and HMMER were conducted and pulled into the boilerplate database. DGE 

results were populated into TrinotateWeb along with the sqlite boilerplate database, and 

this information was used to create Heat Maps, Volcano Plots, and MA plots. 

 

GO Category Groups 

GO categories related to crude oil exposure and endocrine disruption were created 

using QuickGO (https://www.ebi.ac.uk/QuickGO/) (Garcia et al., 2012 and Yednock et 

al., 2015). Categories included Estrogen, Ovary, Ovulation, Reproduction, Sex, 

Spermatogenesis, Testis, Steroidogenesis, Xenobio, Hypoxia, and Heat Shock. Any 

killifish sequence that was annotated with a GO term related to one of the above 

categories was organized into that category for further bioinformatics analysis. This was 

performed by using a custom script to pull GO IDs matching the terms from the Trinotate 

database into an organized tab delimited text file. 

 

Cytoscape 

Cytoscape v.3.4 with the ClueGo v 1.7 and the GOlorize v.1.0.0beta1 plug-ins in 

combination was utilized to visualize complex networks and integrate activities of genes 

https://trinotate.github.io/
https://www.ebi.ac.uk/QuickGO/
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related to testis-derived reproductive disruption at the functional transcriptomic level 

(Shannon et al. 2003, Bindea et al., 2009, and Garcia et al., 2007). Cytoscape is an open 

source bioinformatics program for visualizing molecular interaction networks and 

biological pathways. The protein–protein interactions visualized in Cytoscape are largely 

derived from the literature and suggest possible interactions (Shannon et al. 2003). The 

program displays shapes (nodes) that represent proteins and lines (edges) that represent 

direct interactions between the proteins. ClueGo visualizes non-redundant biological 

terms for large clusters of genes in functionally grouped networks (Bindea et al., 2009). 

GOlorize highlights the nodes that belong to the same class using color-coding and then 

constructs a network using a class-directed layout algorithm (Garcia et al., 2007). 

Cytoscape, ClueGo and GOlorize were all downloaded from www.cytoscape.org. 

 

Cluster and Java TreeView 

 Cluster v3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and 

Java TreeView v1.1.5 (http://jtreeview.sourceforge.net/) were used to visually display the 

expression levels of all the genes within the Cytoscape network of interest.  

 

Cloning and Sanger Sequencing 

 To experimentally verify the assembly results along with the expression analysis, 

primers were designed based on the assembled transcriptome and PCR was performed. 

From the isolated RNA, a cDNA library was constructed using oligo-dT primers 

(Applied Biosystems, Foster City, CA). The cDNA was used as a template to amplify the 

http://www.cytoscape.org/
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net/
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genes of interest. The PCR amplification was performed at 94 °C for 30 sec, 60 °C for 30 

sec, and 72 °C for 30 sec using the designed primer pairs for each gene. These primers 

were designed using Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) and are shown in Table 3. The presence of a unique 

PCR product of appropriate size was verified by agarose gel electrophoresis. Each band 

was extracted from the 2% agarose gel and purified using QIAEX II Gel extraction Kit 

(Qiagen). The TOPO TA Cloning kit (Invitrogen) was used to clone each gene. The 

purified PCR product was ligated into TOPO® vector and transformed into Transform 

One Shot® TOP10F’, chemically competent E.coli cells. The cells were spread on LB-

plate containing 100 µg/mL Ampicillin (Invitrogen), 200 mg/mL IPTG (isopropyl-beta-

D-thiogalactopyranoside) (Invitrogen), and 20 mg/mL X-gal (Invitrogen). Single, isolated 

white colonies were identified and labeled on the Ampicillin-LB plates. Half of the white 

colony was continuously streaked within a quadrant of a 100 µg/mL Ampicillin-LB patch 

plate, and the other half of the white colony was dissolved into 50 uL of UltraPure™ 

DNase/RNase-Free Distilled Water (Invitrogen) for colony PCR. The insert of interest 

was amplified with the M13R vector primer and the gene-specific forward primer. Each 

individual PCR product was separated on a 2% agarose gel. The individual bands were 

excised and gel purified using the gel extraction kit. Each purified plasmid PCR product 

of interest was confirmed using commercially available Sanger sequencing (Genscript, 

Piscataway, NJ, USA). Each cloned sequence was aligned to sequences in the nr database 

of GenBank using BLASTX 2.6.0.   

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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Table 3:  qPCR primer sequences and expected product size. 

Gene Forward Primer (5′-3’) Reverse Primer (5′-3’) Product 

Size 

GSTA4 AGACAAAAGCGATCCTGCAT AGGTACACGGGTCCAGTCAG  232 bp 

PTEN TCTTTGTGAGCGTCAGGATG  GGCGACATCAAAGTGGAGTT  250 bp 

EGLN2 CTGTGATGGCATACCGAGTG  CGTGCGTCATGTTGATAACC  233 bp 

DNAJB1 GGGGGTATGGAAGAGGACAT CCTCCTCTAGCGACACCTTG 202 bp 

ERCC2 CATCAGAGGCAAGACGGACT AGCTGGTCCTCCTGTCTGAA 201 bp 

PDK1 TGGGAAGGTCAAGGTGAATC  GGCGTTGAATTCCTCCAGTA 163 bp 

PPARD TTCCAGAAGTGCCTTTCGTT  GGTAGGCCGTGTTCACTTGT  172 bp 

MMP14 GGTCACTTTTGGAGGGGATT  GCTCGGAAGAAAAACGTCTG 224 bp 

AK7 TGGGCTGATGTTCGATTACA  CAGTACGGAATGGGAGAGGA  163 bp 

TDRD7b GTGGTGCTGATGGGAGAAAT  AGCTCGTGTTTGCCGTAGTC  182 bp 
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Quantitative Polymerase Chain Reaction (qPCR) 

The qPCR reactions were carried out using the StepOnePlus System 96-well PCR 

instrument (Applied Biosystems). The primer sets were verified by TA cloning followed 

by Sanger sequencing. Of the eleven cloned genes, six were analyzed by qPCR including 

GSTA4, EGLN2, PDK1, MMP14, AK7, and TDRD7b. The comparative CT method was 

employed to calculate the relative gene expression, and β-actin was used as the 

housekeeping gene. Each gene was analyzed in quadruplets. Single product formation 

was verified by performing a melt curve after each qPCR run along with verifying by 

agarose gel electrophoresis.  

 

Statistical analyses 

Differences between the lengths and weights of the sacrificed killifish were 

investigated using One Way ANOVA, with Tukey posthoc test, and Independent samples 

T-Test, equal variance assumed, 2-tailed significance, p ≤ 0.05. ANOVA was used to 

determine statistical differences in weight and length of CON and EXP fish between 

treatment days, 0-7. T-Test was used to determine statistical differences between the 

CON vs EXP group at Day 1, Day 3, and Day 7. It was also used to determine statistical 

differences between NSA vs Day 7 EXP and NSA vs Day 7 CON. The Pearson 

Correlation, 2-tailed significance test was performed to determine whether the differences 

in weight of fish had an impact on the expressions of CYP19a, VTG, and CYP1A.  
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Results 

2.1 Fish morphometric characteristics 

Each fish was euthanized with an overdose of MS-222 (tricaine methanesulphonate) and 

measurements of body weight and length were recorded as seen in Table 4. There were 

no statistical differences for weight or length between CON (control group) fish (n=10-

11) or EXP (exposure group) fish (n=10-14) used at Day 0 through Day 7 as determined 

by One Way ANOVA analysis, with Tukey posthoc test, p < 0.05. An Independent 

samples T-Test, equal variance assumed, 2-tailed significance, p ≤ 0.05 showed that there 

was a statistical difference between the weight of the Day 1 CON (n=10) and EXP (n=10) 

group, p=0.001, no difference for Day 3 CON (n=10) and EXP (n=10) group, p>0.05, 

and a trend for the Day 7 CON (n=11) and EXP (n=14) group, p=0.071. The same T-Test 

was performed for the lengths of the sample groups and it was determined that there was 

statistical differences between Day 1 CON (n=10) and EXP (n=10), p=0.001, Day 3 CON 

(n=10) and EXP (n=10), p =0.044, and Day 7 CON (n=11) and EXP (n=14), p=0.033. 

The same T-Test was performed to determine if there were any significant differences in 

weight and length between the NSA (non-sexually active group) (n=8) group compared 

to the Day 7 CON (n=11) and the Day 7 EXP (n=14) groups. Statistical difference was 

observed between the NSA and CON groups for both weight (p=0.001) and length 

(p=0.022). However, there were no significant differences between the NSA group and 

EXP group for both weight and length, p > 0.05. Overall, the EXP and NSA groups were 

significantly different than the CON group. However, correlation graphs and statistical 

data presented below show that the relative gene expression derived from the semi-
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quantitative PCR data did not correlate with the fish weight for CYP19a, VTG, and 

CYP1a.  
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Table 4: Average morphometric measurements consisting of weight and length for male 

and female CON, EXP and NSA group. SD (95 %) is in parenthesis. 

 
Group Day 0 

(mm) 

Day 0 

(g) 

Day 1 

(mm) 

Day 1 

(g) 

Day 3 

(mm) 

Day 3 

(g) 

Day 7 

(mm) 

Day 7 

(g) 

CON 68 

(9.0 )  

5.00 

(2.1 ) 

67.3 

(4.4)* 

3.94 

(0.9)* 

69.1 

(2.8)* 

4.74 

(0.8) 

64.9 

(3.9)* 

3.48 

(0.7)*Δ 

EXP   75.6 

(4.4)* 

5.75 

(1.0)* 

74.9 

(7.9)* 

5.6 

(1.9) 

72.2 

(10.1)* 

5.05 

(2.6)* 

NSA        70.1 

(5.0) 

5.4 

(1.3)Δ 

* T-Test significant difference between CON vs EXP groups, p ≤ 0.05 

Δ T-Test significant difference between NSA vs CON at Day 7, p ≤ 0.05  
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2.2. Effects of crude oil exposure on gene expression 

The responses of CYP19a in gonad and of VTG and CYP1A in liver were used to 

assess the degree of endocrine disruption. Sexually active fish treated with crude oil were 

(exposed) compared to those treated with fish oil only (control) at Day 0, 1, 3 and 7. 

Based on levels and patterns of gene expression along with EEMS data, certain fish were 

selected for generating transcriptomes. 

The spawning season in the summer is the peak time when CYP19a expression in 

females would be expected to be intense. It should be noted that male fish do normally 

convert small amounts of androgens into estrogens but at a level less than what is 

expected from female fish. With that said, changes in CYP19a expression in gonads 

exposed to estrogenic endocrine disrupting compounds are associated with the 

feminization of males and decreased 17 beta-estradiol production in females (Cheshenko 

et al., 2008).  

Results for the CYP19a expression in the Day 0, 1, 3, and 7 control gonads can be 

seen in Fig.2a-d. The top part of the gel represents the CYP19a expression for the control 

gonads that correspond to their β-Actin expression below. The β-Actin expression was 

consistent even though the CYP19a expression was not. Fig. 2e-h shows the normalized 

densitometry analysis for PCR expressions representing the controls at the four time 

points. As expected, the sexually active females generally were producing CYP19a at 

levels higher than the males. Based on the overall biomarker and EEMS selection criteria 

for transcriptome analysis, the females Day7 GC6 and GC7 and males Day7 GC3 and 

GC11 were chosen partially based on their expected CYP19a expressions.    
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Fig. 2 PCR for CYP19a and β-actin in control killifish. Time points were (a) Day 0, (b) 

Day 1, (c) Day 3, and (d) Day 7 along with the corresponding densitometry analysis for 

(e) Day 0, (f) Day 1, (g) Day 3, and (h) Day 7 control gonads normalized to β-actin. GC1-

GC11 represents gonad control from fish 1, gonad control from fish 2, and so forth. “M” 

stands for male and “F” stands for female.  
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The results for the CYP19a expression in the exposed gonads can be seen in Fig. 

3a-c. The top part of the gel represents the CYP19a expression for the exposed gonads 

that correspond to their β-Actin below. The β-Actin expression was consistent and was 

used as an internal control for the three time points. Fig. 3d-f shows the normalized 

densitometry analysis for PCR expressions representing the treatment groups. As 

expected, the sexually active females generally were producing more CYP19a than males 

at all three time points. This verified that the females were sexually active. The down-

regulation seen at Day 3 and Day 7 compared to Day 1 can be interpreted as a sign of 

crude oil endocrine disruption in females. The Day 7 female, GE11F, was chosen for 

transcriptome analysis due to its down-regulation of CYP19a compared to control as well 

as other biomarkers provided below. The males at Day 7 did not show much expression 

of CYP19a. Ideally, males showing signs of endocrine disruption would have expressed 

CYP19a at higher levels than Day 0. Instead, male Day 7 GE1 and GE6 were chosen for 

transcriptome analysis based on other biomarkers and EEMS data (see below). 
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Fig. 3 PCR for CYP19a and β-actin in exposed killifish. Time points were (a) Day 1, (b) 

Day 3, and (c) Day 7 along with the corresponding densitometry analysis for (d) Day 1, 

(e) Day 3, and (f) Day 7 exposed gonads normalized to β-actin. GE1-GE10 represents 

gonad exposed from fish 1, gonad exposed from fish 2, and so forth. “M” stands for male 

and “F” stands for female.  
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VTG is the precursor protein of egg yolk and sexually active females are expected 

to be producing this gene at high levels during the spawning season. VTG induction, 

mainly in males and immature females, has been proposed as a biomarker to assess the 

exposure of estrogenic endocrine disrupting compounds in aquatic environments 

(Matozzo et al., 2008). Although typically silent, the VTG gene is present in male fish 

(Matozzo et al., 2008) along with the hepatic estrogen receptor (Pait et al., 2003). If they 

are exposed to estrogen or estrogenic endocrine disrupting compounds, they can produce 

vitellogenin which could lead to the feminization of males within a population (Pait et al., 

2003).  

Results for the VTG expression in the control livers can be seen in Fig 4a-d. The 

top part of the gel represents the VTG expression for the control livers that correspond to 

their β-Actin expression below. The β-Actin expression was consistent and used as an 

internal control. To sum up the VTG data in a graphical view, Fig. 4e-h shows the 

normalized densitometry analysis for PCR expressions representing VTG and β-Actin. 

With a few exceptions, the majority of the sexually active females are expressing VTG 

while the males are not. The expression of VTG in female control was reduced over time 

for unknown reasons. The loss of VTG expression was not consistent with the high level 

of CYP19a expression in female control gonad at Day 7. Females LC6 and LC7 were 

slightly producing VTG at Day 7; and for this reason together with other biomarkers, 

their gonads were chosen for transcriptome analyses. Female LC4 expressed the highest 

level of VTG at Day 7. Unfortunately, not enough RNA was recovered from the gonad of 

this fish for transcriptome analysis. Male control was expected to lack VTG expression 
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and most did. For this reason in addition to other biomarkers, gonads from LC3 were 

selected for analyses. Gonads from male LC11 were also chosen based on other 

biomarkers. Unfortunately, the liver sample from this male was lost and VTG expression 

not measured.   



48 
 

 

 
 

Fig. 4 PCR for VTG and β-actin in control killifish. Time points were (a) Day 0, (b) Day 

1, (c) Day 3, and (d) Day 7 along with the corresponding densitometry analysis for (e) 

Day 0, (f) Day 1, (g) Day 3, and (h) Day 7 control livers normalized to β-actin. LC1-

LC10 represents liver control from fish 1, liver control from fish 2, and so forth. “M” 

stands for male and “F” stands for female.   
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The results for the VTG expression in exposed livers can be seen in Fig. 5a-c. The 

top part of the gel represents the VTG expression for the exposed livers that correspond 

to their β-Actin below. The β-Actin expression was consistent and was used as an internal 

control for the three time points. To sum up the VTG data in a graphical view, Fig. 5d-f 

shows the normalized densitometry analysis for PCR expressions representing the 

exposure groups at the 3 time points. Overall, the exposure groups unlike the control 

groups had males expressing VTG at each time point. Five of the six males on day 7 

showed signs of feminization by expressing VTG, the most among any time point in this 

study. Day 7 GE1 and GE6 were chosen for transcriptome analysis partially because they 

were showing signs of endocrine disruption by expressing VTG. As in control females, 

the expression of VTG appeared reduced over time. The female Day 7 GE11 was chosen 

for transcriptome analysis based on its CYP19a expression in gonad and EEMS data even 

though a liver sample was not available for PCR analysis of VTG.  
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Fig. 5 PCR for VTG and β-actin in exposed killifish. Time points were (a) Day 1, (b) 

Day 3, and (c) Day 7 along with the corresponding densitometry analysis for (d) Day 1, 

(e) Day 3, and (f) Day 7 exposed livers normalized to β-actin. LE1-LE10 represents liver 

exposure from fish 1, liver expose from fish 2, and so forth. “M” stands for male and “F” 

stands for female.  
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Results for the CYP1A expression in the control livers can be seen in Fig 6a-d. 

The top part of the gel represents the CYP1A expression for the control livers that 

correspond to their β-Actin expression below. The β-Actin expression was consistent and 

used as an internal control. To sum up the CYP1A data in a graphical view, Fig. 6e-h 

shows the normalized densitometry analysis for PCR expressions representing CYP1A 

and β-actin. The control fish showed a little variance with the expression of CYP1A. In 

most species of fish there are relatively low levels of CYP1A constitutively expressed; 

however, this gene can be highly induced by exposure to AhR ligands such as PAHs 

(Patel et al., 2006 and Bemanian et al., 2004). The presence of CYP1A in the control fish 

suggested previous exposure. This is very possible given that these were wild fish. The 

male Day7 GC3 and GC11 were chosen for transcriptome analysis based on their overall 

biomarker and EEMS performance. The Day 7 GC3 male showed the expected lack of 

CYP1A expression for control. No liver was available for Day 7 GC11, so liver CYP1A 

could not be measured. This male was chosen based on gonad CYP19a and EEMS data. 

The females Day 7 GC6 and GC7 were chosen for transcriptome analysis based on the 

overall biomarker and EEMS selection criteria even though they both were slightly 

expressing CYP1A signifying previous exposures. 
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Fig. 6 PCR for CYP1A and β-actin in control killifish. Time points were (a) Day 0, (b) 

Day 1, (c) Day 3, and (d) Day 7 along with the corresponding densitometry analysis for 

(e) Day 0, (f) Day 1, (g) Day 3, and (h) Day 7 control livers normalized to β-actin. LC1-

LC10 represents liver control from fish 1, liver control from fish 2, and so forth. “M” 

stands for male and “F” stands for female.  
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The results for the CYP1A expression in the exposed livers can be seen in Fig. 7a-

c. The top part of the gel represents the CYP1A expression for the exposed livers that 

correspond to their β-Actin below. The β-Actin expression was consistent and was used 

as an internal control. To sum up theCYP1A data in a graphical view, Fig. 7d-f shows the 

normalized densitometry analysis for PCR expressions representing the exposure groups 

at the three time points. The CYP1A expression in the exposed livers was consistent with 

a few exceptions from Day 1 through Day 7. The levels of expression were higher than 

those seen at Day 0 (Fig. 6). Consistent expression of CYP1A suggested that the crude oil 

contained AhR ligands and that the gavage method of dosing was successfully delivering 

PAHs to the liver. Males Day 7 GE1 and GE6 were chosen for transcriptome analysis 

partially because they were showing signs of AhR ligands by expressing CYP1A. The 

female Day 7 GE11 was chosen for transcriptome analysis based on its CYP19a 

expression and EEMS data even though a liver sample was not available for PCR 

analysis. 
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Fig. 7 PCR for CYP1A and β-actin in exposed killifish. Time points were (a) Day 1, (b) 

Day 3, and (c) Day 7 along with the corresponding densitometry analysis for (d) Day 1, 

(e) Day 3, and (f) Day 7 exposed livers normalized to β-actin. LE1-LE10 represents liver 

exposure from fish 1, liver expose from fish 2, and so forth. “M” stands for male and “F” 

stands for female. 
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2.3. Non-sexually Active Killifish Gene Expression.  

The results for the non-sexually active (NSA) expressions for CYP19a, CYP1A, 

and VTG can be seen in Fig. 8a-c. The top part of the gel represents the biomarker’s 

expression for the NSA killifish and corresponds to their β-Actin below. The β-Actin 

expression was consistent and was used as an internal control. To sum up each 

biomarker’s expression data in a graphical view, Fig. 8d-f shows the normalized 

densitometry analysis for PCR expressions representing the NSA killifish. The NSA 

Male G5 was chosen for transcriptome analysis because it expectedly expressed CYP19a 

slightly and had a very little CYP1A along with VTG induction. The NSA Females G7 

was selected for transcriptome analysis because it was normally producing CYP19a and 

only slightly producing CYP1A and VTG. The NSA Female G8 was selected for 

transcriptome analysis because it was normally producing CYP19a. However, a liver 

sample was not available to analysis the VTG and CYP1A expression. Non-sexually 

active females should not be producing high levels of VTG because they are out of 

spawning season (Nicolas et al., 1999). 
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Fig. 8 PCR for (a) CYP19, (b) CYP1A, (c) VTG, and β-actin in non-sexually active 

(NSA) killifish.  Corresponding densitometry analysis is provided for (d) CYP19a, (e) 

CYP1A, and (f) VTG normalized to β-actin. L2-L7 represents livers and G1-G8 

represents gonads from NSA fish 1, from fish NSA 2, and so forth. “M” stands for male 

and “F” stands for female.  
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To sum up in a graphical view, Fig. 9 shows the normalized densitometry analysis 

for the PCR expressions representing the Day 7 CON, Day 7 EXP, and NSA killifish. 

Those chosen for transcriptome analysis are highlighted by arrows. The results for 

CYP19a expression in the chosen control and exposed males were unexpected. 

Feminization should have caused up-regulation of CYP19a expression in exposed males, 

but both the control and exposed males had relatively low levels compared to females. 

Crude oil clearly had some effect as CYP19a was approximately 10x lower in exposed 

compared to control males. The exposed females showed signs of endocrine disruption 

with the down-regulation of CYP19a expression. The chosen control females were 

expressing CYP19a at expected levels for sexually active females. Both male and female 

NSA fish were expressing CYP19a as expected. The results for VTG expression in 

chosen exposed males indicated that the crude oil caused the expression of VTG to 

become up-regulated signifying feminization in Day 7 LE1 but not in Day 7 LE6. No 

liver sample was available for the exposed female chosen for sequencing. As expected, 

both control females were slightly expressing VTG while the control male was not. The 

female NSA fish selected for sequencing were expressing VTG normally. CYP1A was 

increased in crude oil exposed males. No liver sample was available for crude oil in the 

exposed female chosen for sequencing. There was variability among the female and male 

control fish possibly due to pre-exposure (they were wild fish) and in most species of fish 

there are relatively low levels of CYP1A constitutively expressed. However, both male 

and females chosen for sequencing were slightly expressing CYP1A but at levels lower 

than exposed fish. Both the male and female NSA fish chosen were expressing CYP1A at 
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lower levels than the exposed fish. Finally, other factors contributing to selection of 

sexually active fish samples were the EEMS data as well as the amount of gonad RNA 

available for transcriptome analysis. 
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CYP19a CYP19a 

  

VTG VTG 

  

CYP1A CYP1A 

  

 

  

Fig. 9 Expression levels for genes used to detect endocrine disruption at Day 7 in the 

crude exposure experiment and NSA. Each symbol represents the expression of an 

individual fish.  M = male, F= female, EXP= gavaged with crude oil, CON= gavaged 

with Daybrook fish oil, NSA=Non-Sexually Active. Arrows indicate fish selected for 

transcriptome analyses based on their expression levels for particular genes as well as 

their EEMS results and amount of RNA.   
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2.3. Correlation of Fish Weights vs Relative mRNA Expression 

All fish weights (g) for Day 7 EXP, Day 7 CON, and NSA were correlated to the 

semi-quantitative PCR expression for CYP19a, VTG, and CYP1a to determine if the 

differences in size had an impact on their expression. There was no correlation observed 

between VTG levels and weight of all fish (n=23); although a trend was observed, 

p=0.08. There was no correlation observed between VTG levels and weight for males 

(NSA, CON, and EXP, n=15), p=0.986. There was no correlation observed between 

CYP1A and CYP19a levels and weight of all fish (n=23), p = 0.862 and p = 0.892, 

respectively. There was no correlation observed between CYP1A (n=15) and CYP19a 

(n=12) levels and weight for males (NSA, CON, and EXP), p = 0.236 and p = 0.254, 

respectively. Overall, weight did not appear to influence the expression of genes used to 

select the fish for NGS.  
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Fig. 10 Day 7 EXP, Day 7 CON, and NSA fish weights (g) normalized to the semi-

quantitative PCR expression for CYP19a, VTG, and CYP1a. Weight did not influence 

the gene expression.  
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2.4 Excitation-Emission Matrix Spectroscopy (EEMS) 

3D EEMS was used to confirm exposure to crude oil. Spectra for one fish from 

the Day 3 and Day 7 control and exposed groups are provided as well as PAH standards 

for 9-phenanthrol and 1-hydropyrene (Fig. 11). PAH-like compounds were extracted 

from fish gall bladders. Spectra for control fish primarily showed a protein signature with 

no apparent PAH-like compounds. Spectra of exposed, Day 3 fish showed maximum 

fluorescence at excitation 300 nm and emission 370-380 nm, which was consistent with 

the minor peak of phenanthrol, and at excitation 340 nm and emission 385, which was 

consistent with the minor peak of hydroxypyrene. By Day 7, the spectra had changed 

with the major peak at excitation 260 nm and emission 370-380 nm, which was 

consistent with the major peak of phenanthrol. The change in spectra over time indicated 

preferential metabolism of hydroxypyrene-like PAHs over phenanthrol-like PAHs. 

Similarity of spectra to PAH standards confirmed exposure to PAHs from the crude oil 

gavage.  

2D graphs of EEMS data were generated to concisely visualize all fish (Fig. 12). 

Emission was set at 385 nm and excitation ranged from 260-380 nm. Note that the scale 

for the controls is 10x less than that for exposed fish. Overall, the figure illustrated 

similar and low levels of PAHs in all control fish and similar and higher levels of PAHs 

in exposed fish. The fluorescent intensity at Ex265/Em385 in the CON ranged from 2 × 

105 to 4 × 105 and in the EXP group ranged from 2.5 × 106 to 1.2 × 107. The fish chosen 

for transcriptome analyses, based on all the factors for selection, are indicated by arrows 

in Fig. 12. The EXP group representatives were Day 7 GE11F, Day 7 GE1M, and Day 7 
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GE6M, and the CON group representatives were Day 7 GC6F, Day 7 GC7F, Day 7 

GC11M, and Day 7 GC3M. 
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Fig. 11 Representative EEMS for gall bladders of crude oil exposed or control killifish 

collected on Day 3 or 7. PAH standards for 1-hydroxypyrene (0.2 μg/mL) and 9-

phenanthrol (3.0 μg/mL) are included for comparison. Note that the fluorescence scale 

for control is 1,000x lower than exposed. The fluorescence spectra in controls resembled 

that of albumin.  
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Fig. 12 Levels of fluorescence (CPS/µA) in gall bladders after Day 7 exposure to crude 

oil or control. Levels were normalized by dividing them by fish weight (g). Emission was 

at 385 nm and excitation ranged from 260-380 nm. Note that the scale for control is 10x 

less than exposure. NSA fish were not analyzed by EEMS. 
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2.5 Sequencing and de novo transcriptome assembly comparison study 

 A de novo transcriptome assembly comparison study was executed to evaluate the 

performance of four popular de novo assemblers (Bridger, Trinity, Velvet/Oases, and 

SOAPdenovo-Trans) along with various k-mer strategies to determine which process 

generated the highest quality transcriptome. The raw sequence reads from a non-sexually 

active male killifish (G5) was utilized throughout this experiment.  

To globally profile the testis transcriptome of killifish, we employed Illumina 

NextSeq 500 technology to sequence the libraries generating 7,197,900 pair-end short 

reads encoding 1,033,683,143 bases (Table 5). All the raw sequencing reads were 

deposited into the Short Read Archive (SRA) of the National Center for Biotechnology 

Information (NCBI) and can be accessed under the accession number SRX1058750. To 

perform quality control of the raw sequence reads, they were processed to remove 

Illumina adaptor sequences, low quality reads with a Phred score value less than 20, and 

contaminating sequences. The processing of the raw sequence reads resulted in 6,349,606 

(88.21%) clean reads that were assembled by the following assembly strategies; SOAP 

LMK, SOAP SMK, Oases LMK, Oases SMK, Bridger, and Trinity (Table 5).  
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Table 5. Statistics of the raw reads after Illumina sequencing and processing 

 Killifish 

Number of nucleotide bases 1,033,683,143 

Number of raw reads 7,197,900 

Number of clean reads for 

assembly 6,349,606 

Percent of used reads for 

assembly 88.21% 

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.5.1 Statistics of Assembly 

The statistics of each assembly was initially used to evaluate the performance of 

each assembly strategy. Assemblies with the highest to lowest amount of contigs 

produced were: Bridger > SOAP LMK > SOAP SMK > Trinity > Oases SMK > Oases 

LMK (Table 6). Assemblies with the longest to shortest N50 length were: Oases SMK > 

Oases LMK > Bridger > Trinity > SOAP SMK > SOAP LMK (Table 6). Assemblies 

with the highest to lowest average contig length were: Oases SMK > Oases LMK > 

Bridger > Trinity > SOAP SMK> SOAP LMK (Table 6). Assemblies with the highest to 

lowest amount of contigs over 1kb were: Bridger > Oases SMK > SOAP SMK >Trinity > 

Oases LMK > SOAP LMK (Table 6). In summary, the Bridger assembly produced the 

most amount of contigs and contigs over 1kb. The Oases SMK assembly produced the 

longest N50 length and had the highest average contig length. The SOAP LMK assembly 

performed the worst for the N50 length, most amount of contigs over 1kb, and the 

average contig length. The Oases LMK assembly produced the least amount of contigs.  
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Table 6. Statistics of the Assemblies 

 

SOAP 

LMK  

SOAP 

SMK  

Oases 

LMK  

Oases 

SMK  Bridger Trinity  
Contig Number 198,085 187,104 99,567 135,312 303,906 180,658  
N50 Length 917 1,042 1,676 1,743 1,668 1,189  
Minimum 

Contig Length 200 200 200 200 201 224  
Largest Contig 

Length 11,658 11,658 16,019 21,489 15,151 11,023  
Average contig 

length 622 672 1,021 1,035 879 711  
Contigs Over 1k 33,326 36,136 33,847 45,992 81,769 35,527  
RMBT 83.78% 80.77% 85.28% 84.18% 87.71% 82.96%  

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.5.2 RMBT Analysis 

A common method to evaluate the accuracy of a de novo assembly without a 

reference genome is to determine the percentage of reads that can be mapped back to 

transcripts (RMBT) constructed by the assembler. Based on this metric, the Bridger 

assembly had the highest RMBT percentage (87.71%) and the SOAP SMK assembly had 

the lowest (80.77%). Results for Trinity, SOAP LMK, Oases SMK, and Oases LMK 

were similar with RMBT percentages ranging from 82.96% to 85.28% (Table 6). 
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2.5.3 Phylogenetic Tree Alignments 

A strategy to gauge the credibility of a de novo assembly is to see how well its 

annotated sequences compare to those of a related species. Therefore, a phylogenetic tree 

of killifish and eleven publically available fish genomes was constructed using Ensembl 

(Zadlock et al., 2017). Based on the results, the southern platyfish and Amazon molly 

were determined to be the closest related genera to killifish (Fig. 13). Therefore, the 

contigs produced from each assembly strategy were aligned to the southern platyfish and 

Amazon molly genomes independently using BLASTX with an E-value of <1e-3. Results 

showed that the Oases LMK assembly had the best percentage of alignments to both the 

southern platyfish (50.14%) and Amazon molly (51.82%) databases (Table 7). The 

Trinity assembly had the lowest alignment percentage to both the southern platyfish 

(32.68%) and Amazon molly (34.15%) databases. Results for SOAP LMK, SOAP SMK, 

Bridger and Trinity were similar with alignment percentages ranging from 32.68 to 

37.88% for southern platyfish and 34.15 to 39.35% for Amazon molly (Table 7). 
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Fig. 13 Phylogenetic tree analysis. A phylogenetic tree analysis of the 11 publically 

available fish genomes and killifish testis. As highlighted in red, the results of Ensembl 

showed that southern platyfish (X. maculatus) and Amazon molly (P. Formosa) are the 

closest relatives to killifish (F. heteroclitus). Modified from Rana et al., 2016. Reprinted 

with permission from PLOS ONE (http://journals.plos.org/plosone/). 
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Table 7. BLASTX alignments from the six different assemblies against the southern 

platyfish and Amazon molly databases. 

Database 

SOAP 

LMK  

SOAP 

SMK 

Oases 

LMK  

Oases 

SMK  Bridger Trinity 

southern 

platyfish 34.60% 35.22% 50.14% 47.00% 37.88% 32.68% 

Amazon 

molly 36.46% 37.19% 51.82% 48.71% 39.35% 34.15% 

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.5.4 CEGMA Alignments 

A reference-based approach for assessing the quality of an assembly is to align 

the contigs to the 248 highly conserved proteins in the CEGMA dataset. All of the 

CEGMA proteins were present in the killifish testis transcriptome. However, none of the 

assembly strategies were able to incorporate all of them as seen in Table 8. Full-length 

CEGMA proteins, defined as having at least 70% of the protein length found in the 

CEGMA dataset, ranged from 97.58 to 98.79%. Partial CEGMA proteins ranged from 

99.60 to 100%. The Oases LMK and Oases SMK assemblies contained the highest 

percentage of full length (98.79%) and partial length (100%) CEGMA proteins. The 

Trinity assembly contained the lowest percentage (97.58%) of full length CEGMA 

proteins as well as the lowest percentage (98.79%) of partial CEGMA proteins (Table 8). 

Both of the SMK and LMK strategies of SOAP and Oases were unable to assemble the 

same CEGMA proteins at full or partial length (Table 8). 
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Table 8. BLASTX alignments of the six different assemblies to the CEGMA dataset. 

Assembly CEGS  

% 

CEGs Missing Partials  

% 

Partial 

Missing 

SOAP 

LMK  

98.39 KOG0261, KOG0209, KOG0462, 

KOG2311 

99.60 KOG2311 

SOAP 

SMK 

98.39 KOG0261, KOG0209, KOG0462, 

KOG2311 

99.60 KOG2311 

Oases 

LMK 

98.79 KOG0292, KOG2311, KOG4392 100 
 

Oases 

SMK 

98.79 KOG0292, KOG2311, KOG4392 100 
 

Bridger 98.39 KOG0261, KOG0292, KOG0969, 

KOG2311 

99.60 KOG0969 

Trinity 97.58 KOG0292, KOG0209, KOG0434, 

KOG0469, KOG0481, KOG2623 

98.79 KOG0209, 

KOG0292, 

KOG0434 

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.5.5 BUSCO Alignments 

BUSCO is another reference-based program for assessing quality of de novo 

assemblies. The program determined the percentage of mis-assembled transcripts by 

trying to align all transcripts to highly conserved proteins within the BUSCO dataset. 

None of the assembly strategies was able to incorporate all of the 3,023 vertebrate 

BUSCOs genes as seen in (Fig. 14.) Trinity performed best in terms of having the least 

amount of missing genes 675 (22.3%), followed by Bridger 762 (25.2%), Oases SMK 

869 (28.7%), Oases LMK 940 (31%), SOAP SMK 980 (32.4%), and SOAP LMK 1,030 

(34.1%).  
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Fig. 14. BUSCO Analysis. The Trinity assembly performed the best by having the least 

amount of missing BUSCOS. Modified from Rana et al., 2016. Reprinted with 

permission from PLOS ONE (http://journals.plos.org/plosone/). 
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2.5.6 Full Length Transcript Analysis 

Another metric of assembler performance is quantifying the amount of transcripts 

that appear to be nearly full length. Based on the alignments with the manually annotated 

and reviewed SwissProt database, the Trinity assembly performed the best. This 

assembly produced 8,168 proteins that had greater than 70% alignment coverage and 

5,664 proteins that had greater than 90% alignment coverage as seen in (Fig. 15a and Fig. 

15b). Other assemblies with the highest to lowest amount of nearly full length proteins 

were: Oases SMK > Oases LMK > Bridger > SOAP LMK > SOAP SMK. This rank 

order was the same for 70% and 90% alignment analyses.  



79 
 

 

 
Fig. 15 Full Length Transcript Analysis. a) Trinity had the most proteins with greater 

than 70 % alignment coverage. b) Trinity had the most proteins with greater than 90% 

alignment coverage. Modified from Rana et al., 2016. Reprinted with permission from 

PLOS ONE (http://journals.plos.org/plosone/). 
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2.5.7 Open Reading Frames Analysis 

The contigs in this project were sequenced from mRNA; therefore, the best 

assembly strategy should produce a large number of open reading frames (ORFs). 

Overall, the assemblies performed in the same rank order for the presence of ORFs in 

sequence lengths ranging from >799 bps, >999 bps, and >1,199 bps. Assemblies with the 

highest to lowest amount of ORFs for each sequence length were: Bridger > Trinity > 

Oases SMK > Oases LMK > SOAP SMK > SOAP LMK. The Bridger assembly had the 

highest amount of ORFs for all three lengths. This assembly had 3,189 ORFs > 799 bps, 

1,377 ORFs > 999 bps, and 593 ORFs > 1,999 bps (Fig. 16). The SOAP LMK assembly 

had the lowest amount of ORFs for all three lengths. This assembly had 699, 187, and 62 

ORFs for sequence lengths ranging from > 799 bps, > 999 bps, and > 1,999 bps, 

respectively (Fig. 16.)   
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Fig. 16. Open Reading Frames Analysis. The Bridger assembly produced the most 

amount of open reading frames for sequences with >799 bps (red), >999 bps (blue), and 

>1,199 bps (green). Modified from Rana et al., 2016. Reprinted with permission from 

PLOS ONE (http://journals.plos.org/plosone/). 
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2.5.8 Detonate RSEM-EVAL Score 

A novel metric to evaluate the quality of each assembly is Detonate’s RSEM-

EVAL score. This score is based on a probabilistic model that only requires the clean 

reads and the overall assembly for inputs. Assemblies with higher RSEM-EVAL scores 

are considered better. The assemblies with highest to lowest RSEM-EVAL scores are as 

follows: Trinity > Bridger > SOAP LMK > Oases LMK > SOAP SMK > Oases SMK 

(Table 9). The scores for all six assemblies ranged from -5,426.0 × 106 to -6,125.0 × 106 

indicating that all assemblies were very similar (Table 9).  
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Table 9. The Detonate’s RSEM-EVAL scores suggests that the Trinity assembly 

performed the best. The higher the number value, the better the assembly.  

 

Assembly  
SOAP 

LMK 

SOAP 

SMK 

Oases 

LMK 

Oases 

SMK  
Bridger   Trinity 

Score 
-5,488.0 

× 10 ˄6 

-5,715.0 ×  

10˄6 

-5,602.0 

× 10 ˄6 

-6,125.0 

×  10 ˄6 

-5,448.0 

×  10 ˄6 

-5,426.0 ×  

10 ˄6 

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.5.9 Overview of Assembly Strategies 

Based on the eleven evaluation metric categories used to assess the six different 

assembly strategies, it was determined that no one particular assembly strategy performed 

the best in all categories tested (Table 10). The assembly strategies that performed within 

the top three of most metrics was the Bridger assembly (10 of 11), followed by the Oases 

SMK assembly (9 of 11), and then the Oases LMK assembly (6 of 11). The assembly 

strategies that occurred within the top three the least were the Trinity assembly (5 of 11), 

followed by the SOAP LMK assembly (4 of 11) and then the SOAP SMK assembly (3 of 

11). Therefore, the Bridger assembler was chosen to use for the selected transcriptomes.  
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Table 10. Summary of the top three performers for each evaluation metric category. 

 First Second Third 

Contig Number Bridger SOAP LMK 

SOAP 

SMK 

N50 Length Oases SMK Oases LMK Bridger 

Contigs >1kb Bridger Oases SMK 

SOAP 

SMK 

RMBT Bridger Oases LMK 

Oases 

SMK 

southern platyfish 

DB Oases LMK Oases SMK Bridger 

Amazon molly 

DB Oases LMK Oases SMK Bridger 

CEGMA 

Oases LMK and 

Oases SMK 

Bridger, SOAP LMK, and 

SOAP SMK  

BUSCO Trinity Bridger 

Oases 

SMK 

Full Length 

Transcripts Trinity Oases SMK 

Oases 

LMK 

ORFs Bridger Trinity 

Oases 

SMK 

Detonate Trinity Bridger 

SOAP 

LMK 

 

Modified from Rana et al., 2016. Reprinted with permission from PLOS ONE 

(http://journals.plos.org/plosone/). 
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2.6. Next Generation Sequencing of male and female gonadal tissue 

Although this study’s primary focus was on male killifish, it was important to 

identify female-sexually-oriented genes in order to detect endocrine disruption associated 

with feminization. Therefore, each of the following groups had a male and female 

representative transcriptome: sexually active exposed (EXP), sexually active control 

(CON), and non-sexually active (NSA). It should be noted that in some cases two killifish 

representatives were required to meet the minimum amount of RNA required for 

sequencing the EXP male and CON male transcriptomes. 

To globally profile the gonad transcriptomes of all the killifish groups, we 

employed Illumina NextSeq 500 technology to sequence the libraries. All the raw 

sequencing reads were deposited into the Short Read Archive (SRA) of the National 

Center for Biotechnology Information (NCBI), and can be accessed under the following 

accession numbers: EXP male (SRR4384820), EXP female (SRR4384823), CON female 

1 (SRR4384824), CON female 2 (SRR4384822), CON male (SRR4384819),  NSA male 

(SRR4384821), and NSA female (SRR4384825). 

To improve the accuracy of the assembly, the raw sequence reads were cleaned to 

remove Illumina adaptor sequences, low quality reads with a Phred score value less than 

20, and contaminating sequences. The filtering of the raw sequence reads resulted in 

2,494,610 clean reads for EXP male, 1,656,757 clean reads for EXP female, 2,576,992 

clean reads for CON male, 1,820,504 clean reads for CON female 1, 1,352,102 clean 

reads for CON female 2, 2,988,495 clean reads for NSA male, and 1,466,660 clean reads 
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for NSA female (Table 11). These cleans reads were then assembled using the de novo 

assembler, Bridger.   
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Table 11. Statistics of Reference Derived Transcriptome Assemblies  

 
EXP 

 Male  
D7 

 GE 1&6 

EXP 
 Female  

D7 
 GE11 

CON  
Male 

D7 
GC 3&11 

CON 
 Female 1 

D7 
GC6 

CON 
Female 2 

D7 
GC7 

NSA Male 
G5 

NSA  
Female 

G8 

Contig Number 2,494,610 1,656,757 2,576,992 1,820,504 1,352,102 2,988,495 1,466,660 

N50 Length 1,096 1,869 1,503 1,971 1,642 1,280 2,119 

Minimum Contig Length 201 201 201 201 201 201 201 

Largest Contig Length 23,252 16,452 21,154 21,385 15,253 23,074 18,415 

Average contig length 670.37 1,004.47 861.43 1,030.44 954.82 710.84 1147.74 

Contigs Over 1k 464,551 544,273 715,640 597,152 425,377 580,034 543,034 

RMBT to Reference 97.04% 98.47% 96.49% 97.89% 98.4% 96.28% 98.31% 
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2.6.1 De novo transcriptome assembly of the sexually active exposed and non-sexually 

active male killifish groups  

Based on the results of the de novo transcriptome assembly comparison study, the 

Bridger assembler was utilized to perform the de novo assembly for all the killifish 

groups. As seen in Table 11, the EXP male paired-end sequence reads were assembled 

into 2,494,610 contigs with an N50 length of 1,096 bp and average contig length of 

670.37 bp. The EXP female paired-end sequence reads were assembled into 1,656,757 

contigs with an N50 length of 1,869 bp and average contig length of 1004.47 bp. The 

CON male paired-end sequence reads were assembled into 2,576,992 contigs with an 

N50 length of 1,503 bp and average contig length of 861.43 bp. The CON female 1 

paired-end sequence reads were assembled into 1,820,504 contigs with an N50 length of 

1,971 bp and average contig length of 1030.44 bp. The CON female 2 paired-end 

sequence reads were assembled into 1,352,102 contigs with an N50 length of 1,642 bp 

and average contig length of 954.82 bp. The NSA male paired-end sequence reads were 

assembled into 2,988,495 contigs with an N50 length of 1,280 bp and average contig 

length of 710.84 bp. The NSA female paired-end sequence reads were assembled into 

1,466,660 contigs with an N50 length of 2,119 bp and average contig length of 1,147.7 

bp. Overall, one interesting pattern observed was that all three male transcriptomes had 

more contigs compared to the three female transcriptomes.  

 

2.6.3 Assembly Assessment: RMBT Analysis 
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To verify the quality of the reference killifish transcriptome, the percentage of 

reads that can be mapped back to transcripts (RMBT) constructed by the Bridger 

assembler was determined. The RMBT percentages for the seven transcriptomes used to 

make the reference transcriptome are as follows: EXP Male (97.04%), EXP Female 

(98.47%), CON Male (96.49), CON Female 1 (97.89%), CON Female 2 (98.4%), NSA 

Male (96.28%), and NSA Female (98.31%). These percentages were better than what was 

observed in the de novo transcriptome assembly comparison study where the highest 

RMBT percentage was performed by Bridger at 87.71% (Table. 6). Overall, the RMBT 

percentages for the transcriptomes used to make the reference killifish transcriptome 

ranged from 96.49% to 98.31% signifying that all the transcriptomes were reliably 

assembled (Table 11). 

 

2.6.4 Assembly and Annotation Assessment: BUSCO Alignment Analysis 

BUSCO alignment analysis was also used to verify the quality of the reference 

killifish transcriptome. The transcriptome was not able to incorporate all of the 3,023 

vertebrate BUSCOs genes as seen in Fig. 17. However, the BUSCO analysis showed that 

only 563 (18.6%) genes were missing. This was better than what was observed during the 

de novo transcriptome assembly comparison study where Trinity performed the best in 

terms of having the least amount of missing genes 675 (22.3%) as seen in Fig. 16. 
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Fig. 17 BUSCO Analysis of the reference killifish transcriptome. The transcriptome had a 

lower percentage of missing BUSCOs to what was observed in the de novo transcriptome 

assembly comparison study.   
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2.7 Visualization and Analysis of Transcriptome Data 

2.7.1 Overview of data processing and visualization 

The transcriptomes were analyzed using the pipeline displayed in Fig 1. Briefly, 

the Trianotate pipeline was utilized to annotate each de novo assembled transcriptome 

and to determine the differentially expressed genes between the EXP vs CON groups and 

the NSA vs CON groups. The annotated sequences from each group were subjected to 

two filtering steps. The first filtering step was to screen out select annotated GO terms of 

interest from each transcriptome. Secondly, these genes were further filtered into a group 

that met the selection criteria of having a log fold change (LFC) of +/- 2.  This 

concentrated group of genes was then used as the input for Cytoscape analysis. The large 

Cytoscape network was filtered by using the search term “Androgen” to concentrate the 

network down. This resulted in the visualization of molecular interaction networks and 

biological pathways impacting the androgen receptor pathway. Heatmaps were used to 

visualize the differentially expressed genes found within the following interacting 

networks with the androgen receptor pathway: Steroid Hormone Receptor Pathway, 

Apoptosis, and Response to Heat. Select genes from these heatmaps were highlighted in a 

concentrated volcano plot.  

 

2.7.2 Sexually Active Exposed Testis vs Sexually Active Control Testis Volcano Plot 

The comparison between the sexually active exposed (EXP) testis vs the sexually 

active control (CON) testis yielded a total of 223,024 genes as being differentially 

expressed between the two groups (Fig 18). The EXP testis had 76,931 genes down-
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regulated and 146,093 genes up-regulated. The converse was true for the CON testis 

where 76,931 genes were up-regulated and 146,093 genes down-regulated. Results 

indicated that the EXP group had various genes and pathways turned on in response to 

the crude oil.  
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Fig. 18. Volcano plot showing log fold-change and FDR for the comparisons of sexually 

active exposed (EXP) testis vs the sexually active control (CON) testis. The genes with a 

negative log fold-change are down-regulated in EXP (up-regulated in CON) and the 

genes with a positive log fold-change are up-regulated in EXP (down-regulated in CON). 

Genes that are significantly differentially expressed at a false discovery rate (FDR) of 

0.05 are shown in red, and the genes that are not significantly differentially expressed at a 

FDR of 0.05 are shown in black.  
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The comparison between the non-sexually active (NSA) testis vs the sexually 

active control (CON) testis yielded a total of 246,180 genes as being differentially 

expressed between the two groups (Fig 19). The NSA testis had 139,931 genes down-

regulated and 106,249 genes up-regulated. The converse was true for the CON testis, 

which means that more genes associated with sexual activity were up-regulated than 

down-regulated. Results globally indicated that various genes and pathways are 

becoming up-regulated during sexual activation.   



96 
 

  

 
Fig. 19. Volcano plot showing log fold-change and FDR for the comparisons of non-

sexually active (NSA) testis vs sexually active control (CON) testis. The genes with a 

negative log fold-change are down-regulated in NSA (up-regulated in CON) and the 

genes with a positive log fold-change are up-regulated in NSA (down-regulated in 

tCON). Genes that are significantly differentially expressed at a false discovery rate 

(FDR) of 0.05 are shown in red and the genes that are not significantly differentially 

expressed at a FDR of 0.05 are shown in black. 

2.7.3 Cytoscape Network:Regulation of Androgen Receptor Signaling Pathway 

The Cytoscape App ClueGo was used to investigate the differentially expressed 

genes with  an LFC of at least +/-2 within the EXP vs CON group to determine GO 

categories interacting with the the search term “Androgen”. Results showed an interesting 

GO category node, “Regulation of Androgen Receptor Signaling Pathway” (circled in 
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red), within a subcluster of nodes associated with “Steroid Hormone Receptor Signaling 

Pathways” (shown in black). The “Regulation of Androgen Receptor Signaling Pathway” 

node was interacting with various groups of other GO category nodes including 

“Response to Heat” (shown in red) and “Apopotosis” (shown in blue) as seen in the 

Cytoscape network shown in Fig. 20.  The connection of differentially expressed genes in 

the “Regulation of Androgen Receptor Signaling Pathway” node with those in 

the“Response to Heat” and “Apoptosis” nodes signifies that the crude oil gavaged fish 

were responding to a stressful condition at the cellular and molecular level.  
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Fig. 20. Cytoscape Network: Steroid Hormone Receptor Signaling Pathway. Cytoscape network utilizing the ClueGO App 

to show input genes with a logFC +/-2 grouped into GO category nodes interacting with other GO categories via edges (lines). 

The “Regulation of Androgen Receptor Signaling Pathway” node (circled in red) within the “Steroid Hormone Receptor 

Signaling Pathway” in black is impacted by the GO categories associated with “Response to Heat” in red and “Apoptosis” in 

blue. 
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2.7.4 Heatmap:Apoptosis Network 

Heatmaps were generated by comparing NSA vs CON and EXP vs CON. Red 

color indicates up-regulation, green color down-regulation and grey color no expression 

detected in one of the two groups compared. In general, if the NSA vs CON column is 

the same color as the EXP vs CON column, then the crude oil exposed fish, which were 

sexually active, were responding in the same manner as the non-sexually active fish. This 

indicates that expression of genes associated with sexual activity were modified, either up 

(red) or down (green) regulated. A green color in the NSA vs CON column indicates that 

the gene is up-regulated with sexual activity. A red color in the NSA vs CON column 

indicates that the gene is down-regulated with sexual activity. A green color in the EXP 

vs CON column indicates that the gene was up-regulated during sexual activation but 

negatively impacted by crude oil exposure. A red color in the EXP vs CON column 

indicates that the gene was up-regulated in response to the crude oil. It should be noted 

that a single gene can be present in more than one node and hence in more than one 

heatmap. 

The expression of the genes incorporated in the numerous nodes affiliated with 

the “Apoptosis” network (shown in black) in Fig. 20 can be found in the heatmaps shown 

in Fig. 21. Both heatmaps show significant, differentially expressed genes for EXP vs 

CON and for NSA vs CON. Overall, 61 genes were up-regulated and 30 genes were 

down-regulated in the EXP group. The blue brackets contain genes that were up-

regulated by crude oil exposure and down-regulated in the NSA group. This was 20.8 % 

(19 of 91) of the up-regulated genes presented and included PPID and PDK1. The orange 
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brackets show genes that were down-regulated in EXP vs CON but up-regulated or 

similar in NSA vs CON. This indicates that crude oil can down-regulate genes that were 

not associated with sexual activity. These types of genes accounted for 8.7 % (8 of 91of 

the down-regulated genes represented and included DNAJA1.  

When genes in both columns share the same color, it indicates that the response of 

the EXP group was similar to that of the NSA group. This is seen for genes highlighted 

by the green and purple brackets. The green bracket shows genes up-regulated by crude 

oil in sexually active fish that were normally down-regulated by sexual activity. These 

genes accounted for 46.1 % (42 of 91) of those presented and included PDK3 and PDK1. 

The purple bracket shows crude oil down-regulated genes in sexually active fish that 

were normally up-regulated by sexual activity. These genes accounted for 24.1 % (22 of 

91) of those presented and included MMP14 and SIRT1. Overall, similar responses of 

EXP and NSA groups indicated that crude oil exposed fish were responding like non-

sexually active fish and these accounted for 70.3 % (64 of 91) of the genes found in the 

apoptosis network.  
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Fig. 21 Apoptosis heatmap. Both heatmaps show significant, differentially expressed 

genes for the EXP vs CON testis (column) and the NSA vs CON testis (column). The log 

fold-change of each gene’s (row) expression value is contingent upon the expression 

value of the CON testis. The color bar indicates the degree of the log fold-change where 

green is down-regulated and red is up-regulated compared to CON testis. Grey indicates 

that the testis group being compared to the CON testis had no detectable expression.  
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2.7.5 Heatmap:Response to Heat Network 

Expression levels of genes found in the “Response to Heat” Cytoscape network 

(Fig. 20) are shown in Fig. 22. Overall, 14 genes were up-regulated and 4 genes were 

down-regulated in the EXP group. Genes that were up-regulated in the EXP group 

compared to both the NSA and CON groups are highlighted by the blue bracket. This was 

38.8% (7 of 18) of the up-regulated genes presented and included HDAC6 and YWHAE. 

The response signifies that genes associated with sexual-activation were further up-

regulated by crude oil exposure. The down-regulated EXP genes compared to the CON 

group are highlighted by the orange bracket. This response indicated that crude oil can 

down-regulate genes not associated with sexual activity. These types of genes accounted 

for 11.1 % (2 of 18) of the down-regulated genes represented and included DNAJA1.  

As observed in the Apoptosis heatmap, numerous genes within the EXP group 

had the same expression as the NSA group. This is seen within the group of genes 

highlighted by the green and purple brackets. The green bracket represents genes that 

were up-regulated in both the EXP and NSA groups and down-regulated in the CON 

group. These genes accounted for 38.8 % (7 of 18) of those presented and included 

DNAJA2 and FKBP5. The purple bracket represents a group of genes that were down-

regulated in the EXP and NSA groups and up-regulated in the CON group. Sexual 

activation may account for the differential expression observed between the NSA and 

CON groups. However, the crude oil exposure appeared to account for the down-

regulated expression in EXP and NSA groups. This gene expression pattern accounted for 

11.1 % (2 of 18) of the genes and included SIRT1. Overall, it is quite evident that the 
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crude oil exposure caused differentially expressed genes amongst the EXP, CON, and 

NSA groups within the “Response to Heat” network. 

  



104 
 

 

Fig. 22 Response to Heat heatmap. Both heatmaps show significant, differentially 

expressed genes for the EXP vs CON testis (column) and the NSA vs CON testis 

(column). The log fold-change of each gene’s (row) expression value is contingent upon 

the expression value of the CON testis. The color bar indicates the degree of the log fold-

change where green is down-regulated and red is up-regulated compared to CON testis. 

Grey indicates that the testis group being compared to the CON testis had no detectable 

expression. 
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2.7.6 Heatmap: Steroid Hormone Receptor Signaling Pathway Network 

Expression levels of genes found in the “Steroid Hormone Receptor Signaling 

Pathway” cytoscape network (Fig. 20) are shown in Fig. 23. Both heatmaps show 

significant, differentially expressed genes for EXP vs CON and NSA vs CON. When 

comparing EXP vs CON, 18 genes were up-regulated and 6 were down-regulated. This 

indicated that crude oil exposure was modulating 85.7% (24 of 28) of genes associated 

with the steroid hormone receptor signaling pathway. Comparison of EXP vs CON with 

NSA vs CON showed that some genes up-regulated in response to crude oil were down-

regulated or similar in both the NSA and CON groups (highlighted in the blue brackets). 

These accounted for 42.9 % (12 of 28) of the genes presented and included HDAC6. 

These genes are associated with the steroid hormone receptor signaling pathway but not 

necessarily sexual activation. The orange brackets show genes that were down-regulated 

in EXP vs CON but up-regulated in NSA vs CON. This also indicated that non-sexually 

active genes can be impacted by crude oil. This group of genes consisted of 7.1% (2 of 

28) of the down-regulated EXP genes. Overall, a majority of the differentially expressed 

genes in the steroid hormone receptor signaling pathway were modulated by crude oil 

exposure. However, comparisons between EXP vs CON and NSA vs CON showed that 

some genes responding to crude oil were not necessarily related to sexual-activation even 

though they were within GO categories associated with the steroid hormone receptor 

signaling pathway. 

As observed in the Response to Heat and Apoptosis heatmaps, some genes in the 

EXP and NSA groups had similar levels of expression. The green bracket represents 
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genes that were both up-regulated in the EXP and NSA groups and down-regulated in the 

CON group. This group of genes accounted for 35.7% (10 of 28) of the genes within the 

EXP group and included PPARD and KANK2. The purple bracket shows crude oil 

down-regulated genes in sexually active fish that were normally up-regulated by sexual 

activity. These genes accounted for 14.3 % (4 of 28) of those presented and included 

CLOCK and SIRT1. Overall, similar responses of EXP and NSA groups indicated that 

crude oil exposed fish were responding like non-sexually active fish and these accounted 

for 50.0 % (14 of 28) of the genes found in the Steroid Hormone Signaling Pathway 

network. These genes represented an endocrine disrupting effect of crude oil exposure.  
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Fig. 23 Steroid Hormone Receptor Signaling Pathway heatmap. Both heatmaps show 

significantly differentially expressed genes for the EXP vs CON testis (column) and the 

NSA vs CON testis (column). The log fold-change of each gene’s (row) expression value 

is contingent upon the expression value of the CON testis. The color bar indicates the 

degree of the log fold-change where green is down-regulated and red is up-regulated 

compared to CON testis. Grey indicates that the testis group being compared to the CON 

testis had no detectable expression.

2.7.8 Concentrated Volcano plot. 

EXP vs CON and NSA vs CON concentrated volcano plots (Fig. 24) were created 

based on select genes of interest from the Apoptosis, Response to Heat, and Steroid 

Hormone Receptor Signaling Pathway heatmaps (Figs. 21 to 23). The selection focused 

on genes appearing in more than one heatmap, the EXP group acting like the NSA group 
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with the same expression pattern, and the appearance of a heatmap category-specific 

response to the crude oil. The following genes appeared in all three heatmaps signifying 

that they played an integral part within the androgen receptor signaling pathway in 

response to the crude oil: DNAJA1, EP300, SIRT1, HDAC6, and PTGES3. The Steroid 

Hormone Receptor Signaling Pathway and Apoptosis groups contained the following 

genes with the same expression patterns observed in both the EXP and NSA: PPARD, 

SMARCA4, CLOCK, TAF7, CNOT2, KANK2, and PDK3. The genes PPDI and 

YWHAE were also found in the Response to Heat group. Both of these genes were 

significantly up-regulated compared to the CON and NSA groups signifying that they 

were involved in the response to crude oil. Within the Response to Heat group, DNAJC7 

was significantly up-regulated compared to both CON and NSA, and CRTAP’s EXP 

expression pattern was similar to what was observed in the NSA group. PDK1 and 

MMP14 are representatives of the Apoptosis group and were used to validate the 

transcriptomes with qPCR. PDK1 was involved in the response to the crude oil as it was 

significantly upregulated compared to the CON and NSA groups. MMP14 shared the 

same expression patterns in both the EXP and NSA groups which was the opposite of 

what was observed in the CON group. A striking representative within the Steroid 

Hormone Receptor Signaling Pathway heatmap was NCOA4, which appeared to be 

negatively impacted by the crude oil exposure. Overall, theses highlighted genes appear 

to be candidate biomarkers for gonadal-derived endocrine disruption due to crude oil 

exposure.  
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Fig. 24. Concentrated Volcano Plots. Relative expression of genes in EXP vs CON (top) 

and NSA vs CON (bottom) heatmaps. Genes were selected from the Steroid Hormone 

Receptor Signaling Pathway in the Cytoscape network (Fig. 20). Each point represents a 

gene found within more than one of the following heat map groups: Response to Heat, 

Apoptosis and Steroid Hormone Receptor Signaling Pathway.   
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2.8. qPCR validation 

 Ten primer sets were developed for qPCR using sequence information obtained 

from NGS. PCR bands were cloned, sequenced and aligned using BLASTX to nr 

databases in GenBank. Results for all ten primer sets showed high identity to fish 

sequences that ranged from 83 to 100% identity (Table 12). Eight of the ten sequences 

best matched Atlantic killifish, Fundulus heteroclitus. These findings supported the 

quality of the transcriptome assembly. 

qPCR analysis was performed using six of the primer sets. Three biological 

replicates were analyzed using the ΔΔCt method to validate the bioinformatics expression 

analysis for EGLN, GSTA4, MMP14, AK7, TDRD7b, and PDK. All data were 

normalized against β-actin, as a housekeeping gene. The mRNA expression levels were 

presented as mean ± SD (n= 3). The patterns of differential expression were consistent 

with the results from the expression analysis for EGLN, GSTA4, AK7, and PDK1 for the 

EXP vs CON, and NSA vs CON groups as shown in Figs. 25-26. The expression pattern 

for MMP14 and TDRD7b in both EXP vs CON groups are not in line with the 

bioinformatics analysis but the NSA vs CON relationships are. Overall, 10  of the 12 

expression relationships corresponded with the qPCR as seen in Table 13. Variability was 

observed for biological triplicates of each treatment group. The correlations for the 

average of all fish used in the qPCR as well as for just the fish used in the transcriptome 

can be seen in Figs. 27. The transcriptome fish had a better match with the Trinotate data 

than the average of the three fish used in qPCR. Both positive (GSTA4 and PDK1) and 

negative correlations (ENLG, MMP14, and TDRD7b) were observed. The positive 
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correlations were not statistically significant with p = 0.342 and 0.301 for transcriptome 

only and all fish, respectively. However, a strong relationship for Trinotate and qPCR 

was found for those genes showing a negative correlation with p = 0.015 and 0.037 for 

transcriptome only and all fish, respectively. Overall, the correlations do show a good 

relationship between the qPCR data and Trinotate data, especially for the negative 

correlations.   
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Table 12. Cloned sequences aligned-percent-identities with sequences in GenBank  

Sequence Name Primer Blast Hit Hit Identity % 

EGLN2 Forward  Fundulus heteroclitus 96% 

EGLN2 Reverse Fundulus heteroclitus 99% 

PDK1 Forward Nothobranchius furzeri 93% 

PDK1 Reverse  Poecilia reticulata 96% 

DNAJB Forward Fundulus heteroclitus 96% 

DNAJB Reverse Fundulus heteroclitus 97% 

ERCC2 Forward Fundulus heteroclitus 85% 

ERCC2 Reverse Fundulus heteroclitus 96% 

AK7 Forward Fundulus heteroclitus 90% 

AK7 Reverse Fundulus heteroclitus 95% 

TDRD7 Forward Poecilia reticulata 83% 

TDRD7 Reverse Salmo salar 91% 

PPARD Forward Fundulus heteroclitus 93% 

PPARD Reverse Fundulus heteroclitus 95% 

MMP14 Forward Fundulus heteroclitus 94% 

MMP14 Reverse Fundulus heteroclitus 94% 

PTEN Forward Fundulus heteroclitus 100% 

PTEN Reverse Fundulus heteroclitus 98% 

GSTA4 Forward Fundulus heteroclitus 97% 

GSTA4 Reverse Fundulus heteroclitus 95% 
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Fig. 25 Changes in EGLN, GSTA4, and MMP14 gene expression measured by qPCR. 

The mRNA expression levels are presented as mean ± SD (n= 3)  
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Fig. 26 Changes in AK7, TDRD7b, and PDK1 gene expression measured by qPCR. The 

mRNA expression levels are presented as mean ± SD (n= 3) 
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Table 13. Trinotate expression relationships with qPCR analysis 

Gene Trinotate 

EXP vs CON 

qPCR 

EXP vs CON 

Trinotate 

NSA vs CON 

qPCR 

NSA vs CON 

EGLN2     

GSTA4     

MMP14     

AK7     

TDRD7b     

PDK1     
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Fig. 27 Correlation between transcriptome expression and qPCR. Genes were separated 

into positive (GSTA4, PDK1) or negative (ENGLN2, MMP14, TDRD7b) correlations. 

AK7 results were not included. Trianotate expression data are for EXP vs CON and NSA 

vs CON. qPCR data are the difference of EXP minus CON and NSA minus CON 

averages. Averages for all three fish used in the qPCR are shown (All) or just those fish 

selected to make transcriptomes (Transc). Trend lines are shown with R2 values 

calculated using Pearson Bivariate Correlation (SSPS). Negative correlations are 

statistically significant with p = -0.838 and -0.899 for All and Transc, respectively  
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Discussion  

3.1. Selection of fish for NGS 

Currently, no research has been presented on testis-derived reproductive 

disruption due to crude oil exposure in killifish (F. heteroclitus). One of the goals of this 

work was to establish exposure times at which the reproductive system of F. heteroclitus 

responds to crude oil at the molecular level and to generate gonadal RNAs for 

transcriptome analysis. Another objective was to create an annotated characterization of 

the testis transcriptomes in F. heteroclitus to identify key genes and pathways associated 

with disrupted physiological function of testis due to crude oil exposure. This was 

accomplished by applying Illumina NextSeq 500 technology to the following three 

experimental treatments in F. heteroclitus to determine the genes and molecular pathways 

that get turned on during sexual activation and how they are impacted due to crude oil 

exposure: 1) an exposed spawning male gavaged with crude oil collected from the 

DeepWater Horizon oil rig prior to the accident; 2) a control spawning male gavaged 

with fish oil; and 3) a control non-spawning male. In doing so, modern biomarkers were 

identified to assess natural resource damage caused by oil spills. These biomarkers can be 

used in future studies to link molecular responses to population level effects. Hence, 

impaired reproductive responses will be associated with detectable molecular responses.  

In order to generate transcriptomes in which endocrine disruption is occurring, it 

is necessary to distinguish between reproductively active and inactive females and males 

and to determine at what time point crude oil is causing endocrine disruption. Male 

killifish in spawning condition have bright colors on their anal fin and sides. 
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Reproductively active females undergo vitellogenesis. During this process, vitellogenin, 

the egg yolk protein precursor is synthesized in the liver, secreted into the plasma, and 

transported to the oocytes for uptake (Levi et al., 2009, Nicolas et al., 1998, and 

Bemanian et al., 2004). The most dominant trigger of vitellogenin expression is the 

ovarian steroid hormone 17β-estradiol (E2) that is synthesized by CYP19a in the gonad 

(Cheshenko et al., 2008). Therefore, expression of the VTG gene in liver as well as 

CYP19a in ovary is used to determine whether or not female killifish are reproductively 

active.  

The approach of the experiment was to select endocrine disrupted fish for gondal 

transcriptome analyses that had known levels of crude oil exposure. Select biomarkers 

(CYP19a, VTG, and CYP1A) known to respond to EDCs such as PAHs were used to 

select affected fish. Several laboratory studies have documented oil-related declines in 

reproductive parameters in marine teleosts such as alterations in levels of reproductive 

hormones, inhibited gonadal development, and reduced egg and larval viability (Idler et 

al., 1995, Thomas et al., 1995, Truscott et al., 1992). In field studies, Bugel et al (2010) 

showed that the reproductive health of male F. heteroclitus can be impacted by endocrine 

disrupting compounds (EDCs). He found that male killifish from Newark Bay, a 

chronically contaminated estuary, had decreased gonad weight, altered testis 

development, and decreased CYP19a mRNA expression that corresponded with 

increased PAHs in gall bladders. Additionally, there is in vivo evidence that PAH 

exposure resulted in reproductive and developmental deficits in female killifish collected 

from PAH-impacted sites (Patel et al., 2006). This study showed that the field collected 
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female killifish exposed to the PAH, benzo(a)pyrene (BaP), in the laboratory for 15 days 

experienced inhibited ovarian aromatase (CYP19a) activity. In other studies, PAHs have 

had deleterious effects on the vitellogenesis in female fish such as the reduction in 

circulating hormones and plasma vitellogenin, estrogenic and antiestrogenic effects, 

retardation of oocyte maturation, and reduction of reproductive success (Nicolas et al., 

1998). In males, the VTG gene is present but normally silent (Matozzo et al., 2008). 

However, it may be activated by xeno-estrogens and this activation leads to the 

feminization of males, signifying endocrine disruption. Aryl hydrocarbon receptor (AhR) 

ligands, such as PAHs, have also been shown to be capable of inducing CYP1A 

expression while disrupting 17β-estradiol-induced expression of VTG and reducing ERα 

levels (Bemanian et al., 2004 and Patel et al., 2006). Therefore, in the present study, 

evidence of endocrine disruption was expected to be associated with 1) up-regulation of 

CYP1A in both genders, 2) up-regulation of VTG and down-regulation of CYP19a in 

male killifish and 3) down-regulation of VTG and CYP19a in female killifish. 

The selection of sexually active female fish for transcriptomes was based on the 

following criteria. Of the three possible Day 7 female controls, GC6 and GC7 were 

selected as both showed higher levels of CYP19a than found in the non-sexually active 

fish (Fig 19). However, expression of VTG in these control female fish decreased 

between Day 0 and Day 7 for unknown reasons. Loss of VTG expression was not 

consistent with the high level of CYP19a. Both LC6 and LC7 were expressing CYP1A 

signifying a potential previous exposure; although, levels were less than half of that in 

exposed fish. Previous exposure is possible as these were wild fish. In addition, most 
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species of fish have relatively low levels of CYP1A constitutively expressed (Patel et al., 

2006 and Bemanian et al., 2004). Of the five Day 7 female exposed fish, only GE11 was 

selected for transcriptome analysis. GE11 showed down regulation of CYP19a, which 

indicated endocrine disruption, as well as high levels of PAH-like compounds in its 

EEMS scan. Research has shown down regulation of CYP19A mRNA in females 

exposed to PAHs (Patel et al, 2006). In terms of the other females, two had gonads that 

were too small for RNA isolation and two showed unexpectedly low levels of CYP1A in 

liver despite exposure. In summary, GC6 and GC7 were chosen to represent female, 

sexually active, unexposed fish, and GE 11 was chosen to represent female, sexually 

active, exposed fish. 

Of the six possible Day 7 male control fish, GC3 and GC11 were chosen for 

transcriptome analysis. The other four candidates were eliminated because gonadal RNA 

was not available for GC1 and GC2, and both GC5 and GC8 were expressing high levels 

of CYP1A similar to those of the exposed fish (Fig. 9). It should be noted that GC11’s 

liver was lost during RNA preparation so both VTG and CYP1A expression analysis 

could not be analyzed. GC3 and GC11 were selected because they showed low levels of 

CYP19a as expected for male fish and had levels of PAH-like compounds about 10 fold 

lower than the exposed group in EEMS scans. Of the eight Day 7 male exposed fish, both 

GE1 and GE6 were selected. GE1 and GE6 had low levels of CYP19a: it was suppressed 

below those in control (Fig. 9). This result did not indicate feminization with potentially 

increased estrogen. It did correspond with Bugel et. al.’s finding of smaller gonads and 

reduced CYP19a in male killifish from Newark Bay (2010). Results for VTG were mixed 
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with expression levels in LE1 about 100x higher than in LE6. It was decided not to use 

this biomarker for transcriptome selection as expression levels declined from Day 1 to 

Day 7. Both fish also showed increased levels of CYP1A and PAH-like compounds 

supporting exposure to AH ligands. In summary, GC3 and GC11 were chosen to 

represent male, sexually active, unexposed fish, and GE 1 and GE6 were chosen to 

represent male, sexually active, exposed fish. 

The results for the non-sexually active (NSA) expressions for CYP19a, CYP1A, 

and VTG can be seen in Fig. 8. The NSA Male, G5, was chosen for transcriptome 

analysis because it expectedly was not expressing CYP19a or VTG and had very little 

CYP1A. It was expected that VTG would not be expressed in NSA males because VTG 

is the egg yolk protein precursor. The NSA female, G7, was selected for transcriptome 

analysis because it was normally producing CYP19a and not producing CYP1A. 

However, it was unexpectedly expressing VTG. Non-sexually active females should not 

have been producing high levels of VTG because they were out of spawning season 

(Nicolas et al, 1999). The unexpected expression of VTG may be related to their 

laboratory food and estrogen build up within the aquatic atmosphere of the tank. The 

NSA Female, G8, was also selected for transcriptome analysis because it was normally 

producing CYP19a. 

The influence of fish size on gene expression was evaluated as shown in Fig. 10. 

Statistical analyses showed that the EXP and NSA groups were significantly larger than 

the CON group for both weight and length (Table 4). Pearson Correlation tests were 

performed to determine if the differences in size had an impact on the expression of the 
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three biomarkers used for NGS selection. All fish weights (g) for Day 7 EXP, Day 7 

CON, and NSA were correlated to the semi-quantitative PCR expression for CYP19a, 

VTG, and CYP1a and it was shown that weight did not influence the expression of genes 

used to select the fish for NGS. Therefore, the only factor contributing to the change in 

gene expressions was state of sexual activity and crude oil exposure.  

The CYP19a, VTG, and CYP1A biomarker analysis for all the fish did not always 

correspond with the expected results seen in other studies (Bugel et. al., 2010, Nicolas et. 

al., 1998, Bemanian et. al., 2004 and Patel et al., 2006). It should be noted that in these 

other studies the biomarker response was to PAH exposure and not crude oil exposure. 

Crude oil is a complex mixture of various chemicals including PAHs. On the other hand, 

the exposure for non-responsive fish might have not been long enough or concentrated 

enough to trigger an expression change in some biomarkers. These fish might have 

become tolerant to PAHs due to previous exposures given that they were wild fish. The 

review by Nicolas states that elevated levels of PAHs affect the vitellogenic cycle 

differently between species, populations, and even between individuals (Nicolas, 1999). 

Therefore, it was very important in the present study to validate that the fish were 

successfully exposed to the crude oil. 

EEMs was utilized to detect the presence of PAHs in the gall bladder as another 

parameter for selecting fish for sequencing. Crude oil is a complex mixture that consists 

of four major chemical groups with alkanes and cycloalkanes being the major 

constituents along with aromatic hydrocarbons and asphaltics (Robbins and Hsu., 1996). 

Of these four major chemical groups, PAHs have been routinely used for biomonitoring 
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crude oil (Jung et al., 2011) because of the ease of detected by fluorescence (Kim et al., 

2010). The aromatic ring structures of PAHs allow them to be detected and distinguished 

by unique excitation (light absorption) and emission (fluorescence) wavelengths. The 

EEMS spectra for gall bladders showed the presence of PAH-like compounds. The 3D 

scans for control fish primarily showed a protein signature with no apparent PAH-like 

compounds, whereas the 3D scans for exposed fish showed PAH profiles consistent with 

the presence of PAHs (Fig. 11). The spectra of exposed, Day 3 fish showed maximum 

fluorescence at Ex300/Em370-380, which was consistent with the minor peak of the 

standard for 9-phenanthrol, and at Ex340/ Em385, which was consistent with the minor 

peak of the standard for 1-hydroxypyrene. By Day 7, the spectra had changed with the 

major peak at Ex260/EM370-380 nm, which was consistent with the major peak of the 

standard for 9-phenanthrol. The change in spectra over time indicated not only the 

presence of PAHs but also the preferential metabolism of hydroxypyrene-like PAHs over 

phenanthrol-like PAHs. The retention of phenanthrene-like compounds compared to 

other types of PAHs is supported by the literature (Meador et al., 2008). Indeed, these 

authors recommend using phenanthrene to represent PAH exposure in field studies.  

The general pattern of PAH-like compounds in gall bladders was observed by 

converting 3D to 2D scans. In these scans, emission was held at 385 nm and excitation 

was scanned from 260 to 400 nm. Data was normalized by dividing the fluorescence 

intensity by fish weight. The resulting figure showed that exposed fish had approximately 

10x as much PAHs as control fish (Fig. 12). Presence of PAHs in controls was probably 

due to the fact that the fish were wild and exposed to PAHs in their environment prior to 
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collection. They may also have received PAHs from their laboratory diet - commercial 

silversides. The overall outcome from these data was evidence that the gonads containing 

the molecular biomarkers for endocrine disruption were exposed to the crude oil as seen 

by the EEMS data.  

Based on biomarker analysis, RNA availability, and EEMS analysis, the 

following fish were chosen for transcriptome analysis: Day 7 male GE1 and GE6, Day 7 

female GE11, Day 7 male GC3 and GC11, Day 7 female GC6 and GC7, NSA female 7 

and 8, and NSA male 5. Even though this study just concentrated on the endocrine 

disruption in males exposed to crude oil, it was important to generate transcriptomes of 

both males and females to help detect female-sexually orientated genes that could be 

associated with feminization in males. As seen in the Trianotate pipeline, this strategy 

was employed for the annotating and quantifying of all six transcriptome categories.  

 

3.2 De Novo Assembly Comparison Study 

To generate the highest quality transcriptomes, a de novo transcriptome assembly 

comparison study was executed to evaluate the performance of four popular de novo 

assemblers (Bridger, Trinity, Velvet/Oases, and SOAPdenovo-Trans) along with various 

k-mer strategies. Currently, there is not a gold standard for a de novo transcriptome 

assembler. It is known that different de novo assemblers using the same transcripts with 

similar user defined parameters have produced assemblies that vary amongst each other 

(Moreton et al., 2014; Chopra et al., 2014; He et al., 2015; Schliesky et al., 2012). One of 

the goals of this work was to compare four recently published de novo assemblers and 
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one user defined parameter, the k-mer value, to determine if one strategy was better than 

another for de novo assembly of a non-model organism transcriptome. The assemblers 

included Trinity, Oases, and SOAPdenovo-Trans (commonly used de Bruijn graph-based 

de novo assemblers) as well as Bridger (uses the minimum path cover model to construct 

splice graphs that are used to build compatibility graphs). Additionally, eleven metrics of 

assembly quality were compared in order to better form a consensus as to which ones 

should be used to assess de novo transcriptome assemblies. Overall, eleven metrics were 

used to evaluate six assembly strategies.  

Commonly used evaluation statistics, such as the number of contigs, the N50 

value, and contig length, were developed for genome assemblies but have also been used 

to evaluate transcriptome assemblies (Baker, 2012). Better assemblies should 

theoretically have more reads assembled into longer contigs and thereby higher N50 

values. However, importance of the N50 metric has been questioned (Li et al., 2014; 

Salzberg et al., 2012). Research indicated that N50 values could be artificially increased 

based on k-mer strategy and or the user defined minimum contig length. Short contigs 

occurred when high k-mer values did not assemble short reads of low abundance 

transcripts or low k-mer values assembled short fragmented transcripts due to lack of 

overlap (Surget-Groba et al., 2010; Chopra et al., 2014). In both cases, if the resulting 

transcripts were shorter than the minimum contig length parameter established by the 

user, they were eliminated by the program ultimately generating artificially high N50 

values. In the study presented, the influence of high (LMK) and low (SMK) k-mer values 

on evaluation statistics was determined for SOAP and Oases assemblies. Both showed 
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somewhat higher N50 values for low k-mer assemblies, but greater differences were 

found for the assembler. For example, the N50 lengths for SOAP LMK and SMK were 

917 and 1,042, respectively, while those for Oases LMK and SMK were 1,676 and 1,743, 

respectively (Table 2). Bridger also used a low k-mer strategy, and results showed that 

contig number as well as contigs over 1 kb were twice those of the other assemblies. 

Taken together, the assembler program had more influence on these traditional, genomic 

metrics than the k-mer values, and the Bridger assembler performed the best in two out of 

the three metrics. 

The quality of an assembly can be assessed by its ability to construct transcripts 

that align to genes in publically available databases. In the study presented, the six 

assemblies were evaluated using two well-annotated phylogenetic tree relatives, the 

CEGMA database, and the BUSCO database. For the phylogenetic tree analyses, killifish 

transcriptome assemblies were aligned to the reference databases of southern platyfish (X. 

maculatus) and Amazon molly (P. formosa) (Fig. 13). Oases assemblies had the best 

percentages of alignments ranging from 47.00 to 51.82%. Results for the other 

assemblies were similar but lower with alignments ranging from 32.68 to 39.35%. The 

low percentage of killifish matches in general could be attributed to the evolutionary 

distance between killifish and the other two species as other de novo transcriptome 

assembly studies using non-model fish had similar findings (Ji et al., 2012; Huth and 

Place, 2013; Salisbury et al., 2015). Additionally, the BLASTX results were based on 

aligning the testis transcriptome of killifish with the entire genomes of the southern 

platyfish and Amazon molly. This would have inherently caused a lower percentage of 
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matches. Furthermore, some of the unannotated contigs may be short and consist of 

sequences lacking well-characterized protein domains, comprised of 3’ or 5’ untranslated 

regions, or be non-coding RNAs (Gao et al., 2014). Results also showed that the general 

performance of each assembly’s BLASTX alignment was more dependent on the 

assembler software than k-mer value. For example, assemblies using Oases SMK and 

LMK had percent alignments of 47.00 and 50.14% in southern platyfish while SOAP had 

percent alignments of 35.22% and 34.60% for the same species (Table 8). 

CEGMA and BUSCO evaluated assembly quality by aligning contigs to core 

proteins. For CEGMA, most of the 248 core proteins were found with each assembler; 

therefore, this metric did not distinguish between them (Table 9). Interestingly, some 

assemblers left out CEGMA proteins found by others. This indicated that particular 

assemblers had different proficiencies in reassembling clean reads into transcripts as 

previously reported by Naksugi et al. (Schliesky et al., 2012). For example, KOG0292 

(Vesicle coat complex COPI, alpha subunit) was only present in the SOAP SMK an 

LMK strategies, and KOG2311 (NAD/FAD-utilizing protein possibly involved in 

translation) was only present in Trinity. In addition, both SOAP and Oases were unable to 

assemble properly the same transcripts regardless of the k-mer strategy. For example, 

both SOAP SMK and LMK did not assemble at full length KOG0261, KOG0209, 

KOG0462 or KOG2311. Both Oases SMK and LMK did not assemble at full length 

KOG0292, KOG2311 or KOG4392. This indicated that the assembler’s algorithms had a 

more influential role than the k-mer selection when assembling transcripts. BUSCO 

showed greater differences between assemblers than CEGMA most likely due to the 
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larger database of 3,023 vertebrate genes (Fig. 14). Missing BUSCO genes for the six 

different assemblies ranged from 675 (22.3%) in Trinity to 1,030 (34.1%) in SOAP 

LMK. As with CEGMA and BLASTX alignments, this metric showed that the assembler 

rather than the k-mer strategy had more influential over the outcome. Both the SMK 

(28.7%) and LMK (31%) strategies of Oases outperformed the SMK (32.4%) and LMK 

(34.1%) strategies of SOAP. Overall, results indicated that for either genomes or 

transcriptomes, if a user’s goal was to annotate the most genes possible for a non-model 

organism, Oases was the assembler of choice. If the goal were to assemble the most 

accurate transcriptome, Trinity or Bridger would be the best choice. As of 2015, CEGMA 

is no longer actively supported and has been essentially replaced by BUSCO. 

This study incorporated several evaluation metrics specifically for transcriptomes 

including number of full-length transcripts, ORFs, Detonate’s RSEM-EVAL and RMBT. 

Shown here as well as other studies, the Trinity assembler proved able to reconstruct the 

most full-length transcripts (Chropra et al., 2014; Grabherr et al., 2011; Duan et al., 

2012). Alignment coverages were greater than 70% (8,168) and 90% (5,664) even though 

it utilized a single k-mer value (Figs. 14a and 14b). The Bridger assembler was able to 

reconstruct the most ORFs (Fig. 16). Results showed that transcripts of >799 bps, >999 

bps, and > 1199 bps had 3,189, 1,377 and 593 ORFs, respectively. This number of ORFs 

was 23.9% (>799 bs), 19.3% (>999 bps), and 16.3% (>1199 bps) higher than those for 

Trinity, the next closest assembler. SMK and LMK assemblies of Oases and SOAP were 

similar for both full-length transcripts and ORFs; therefore, the overall quality of each 

assembly's performance was not reliant on the k-mer strategy. Detonate’s RSEM-EVAL 
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provided a reference-free evaluation score where a high value indicated an accurate 

transcriptome assembly. Results showed that the Trinity assembly appeared slightly 

better than the Bridger and SOAP LMK (Table 10). However, all scores were similar 

(ranging from 5,426.0 ×10 ˄6 to 6,125.0 ×10 ˄6); and therefore, this metric did not 

distinguish well between the assemblers. The RMBT statistic determined assembly 

accuracy based on the philosophy that the higher the amount of processed reads that can 

be mapped back to an assembly the fewer the errors (i.e. mis-assembly) introduced by the 

assembler program. Results for the six assembly strategies evaluated showed RMBT 

percentages ranging from 87.71% for the Bridger assembly to 80.77% for the SOAP 

SMK assembly (Table 7). Other studies comparing assembly strategies also reported 

differences in RMBT percentages (Haznedaroglu et al., 2012; Moreton et al., 2014; 

Chopra et al., 2014; Zhao et al., 2011; Schliesky et al., 2012). In the study presented, the 

assembler software and not the k-mer strategy appeared to have the greater impact. 

RMBT results showed that the SMK and LMK assemblies for both SOAP (80.77 and 

83.78%, respectively) and Oases (84.18 and 85.28%, respectively) performed similarly. 

In summation, both Trinity and Bridger performed well according to transcriptome-

specific metrics and k-mer sizes were not a factor.  

Overall, the study presented compared assembly programs, k-mer strategies, and 

various metrics for determining de novo transcriptome assembly quality. Assembly 

performance was evaluated using the testis transcriptome of Fundulus heteroclitus, an 

estuary fish that is a sentinel teleost species commonly used in environmental toxicology 

studies (Burnett et al., 2007). To date, this is the first study to compare the performances 
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of the commonly used de Bruijn graph-based de novo assemblers, Trinity, Oases, and 

SOAPdenovo-Trans, with a new de novo method employed by Bridger. This is also the 

first study to evaluate the effects of using a small and large multiple k-mer strategy for 

the Oases and SOAPdenovo-Trans assemblers within the same study. Based on the 

eleven evaluation metrics presented above, it was found that the product of those 

assemblies was more influenced by the assembler itself than the k-mer strategy. Bridger 

performed more often within the top three of each evaluation metric than the de Bruijn 

graph-based programs for the de novo transcriptome assembly of the killifish RNA-Seq 

reads. Therefore, Bridger was chosen as the assembler for all the other transcriptomes 

based on its performance in this study and the fact that its run time was substantially 

quicker compared to Trinity.  

 

3.3 Validation of Reference Transcriptomes 

Having chosen Bridger to assembly transcriptomes, it was then necessary to 

decide on the approach that would allow comparison of gene expression among the 

different treatment groups. Incorporating female killifish transcriptomes into the analyses 

was imperative as it allowed male feminization due to endocrine disruption to be 

assessed. Therefore, each of the following groups had a male and female representative 

transcriptome: sexually active exposed (EXP), sexually active control (CON), and non-

sexually active (NSA). Two possible approaches for transcriptome assembly were 

considered. The first was to assemble reads for each sample separately and then compare 

them. However, this approach has proven extremely complicated by the necessity to 
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match the same transcripts derived from each of the assemblies (Haas et al., 2013). In 

addition, the killifish were wild outbred animals expected to have genetic variability 

between individuals further complicating this approach. The more straightforward 

alternative was to first combine all reads across all samples into a single data set and 

assemble them to generate a single reference assembly. The transcripts from each sample 

could then be quantified by aligning each sample’s (not normalized) reads to the 

reference transcriptome assembly and counting the number of reads that align to each 

transcript (Haas et al., 2013; Farrell et al., 2014). The quality and accuracy of each 

transcriptome assembled was determined by statistical analyses. 

Transcriptome quality and accuracy was assessed using both in silico and in vitro 

approaches. RMBT analysis coupled with BUSCO alignment analysis constituted the two 

in silico approaches employed to validate the accuracy and quality of the reference 

killifish transcriptome. The percentage of reads that could be mapped back to the 

transcripts (RMBT) ranged from 96.49% to 98.31% signifying that all the transcriptomes 

were accurately assembled (Table 11). The results of the BUSCO alignments further 

strengthen the quality of the reference killifish transcriptome by having less missed genes 

(563/3,023, 18.6%) compared to the top performer in the de novo transcriptome assembly 

study, Trinity (675/3,023, 22.3%). It should be noted that some of the contigs may be 

missing because they are short and therefore 1) do not consist of well characterized 

protein domains, 2) predominately be 3’ or 5’ untranslated regions, or 3) be non-coding 

RNAs (Gao et al, 2014). Overall, these two in silico assessment tools validated the 

quality and accuracy of the de novo assembly of the reference transcriptome. 
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Trinotate was used to generate gene expression levels of each male transcriptome. 

An in vitro approach to validating these expression levels included designing primers 

based off the reference transcriptome and performing qPCR analyses. Ten gene specific 

primers were designed based on sequences assembled by Bridger and annotated by 

BLASTx. The primers were used to amplify partial sequences from male killifish cDNA 

by PCR. The resulting bands were the expected size (Table 3). DNA from the PCRs were 

cloned, sequenced and aligned to sequences in GenBank to find the percent identity to F. 

heteroclitus as shown in Table 12. Of the ten cloned genes, only PDK1 and TDRD7b did 

not have a F. heteroclitus match. However, these genes still had a high percent identity 

match to other fish species. Overall, the results showed that all of the amplified DNA 

fragments aligned with their respective gene with identities of ≥ 83% , which validated 

the accuracy of the assembly.  

Of the ten genes cloned and sequenced, six were used for qPCR analysis (EGLN, 

GSTA4, MMP14, AK7, TDRD7b, and PDK.). There were a total of 12 Trinotate 

expression relationships for the six genes (EXP vs CON and NSA vs CON), and ten of 

these corresponded with the qPCR analysis (Table 13). The main feasible reason causing 

the discrepancy between the qPCR data and Trinotate expression data may be associated 

with individual variance between the fish. Additionally, according to the FPKM 

calculation, the length of transcripts and incomplete paired-end data could affect the 

FPKM value (Hsu et al., 2015). 

𝐹𝑃𝐾𝑀 =
𝑚𝑎𝑝𝑝𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑥𝑜𝑛 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑝𝑒𝑑 𝑒𝑥𝑜𝑛 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝑘𝐵)
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Correlating qPCR results with Trinotate results further validated the transcriptome 

data. Correlations for the average of all fish used in the qPCR as well as for just those 

used in the transcriptome can be seen in Fig. 27. Trinotate data was presented as EXP vs 

CON and NSA vs CON; therefore, a similar relationship was needed for qPCR data. It 

was decided to represent the data as EXP minus CON and NSA minus CON. 

Interestingly, some genes showed a positive correlation (GSTA4 and PDK1), while 

others showed a negative correlation (ENLG, MMP14, and TDRD7b).  The positive 

correlations were not statistically significant with p = 0.342 and 0.301 for transcriptome 

only and all fish, respectively. However, a strong relationship for Trinotate and qPCR 

was found for those genes showing a negative correlation with p = 0.015 and 0.037 for 

transcriptome only and all fish, respectively. Overall, the correlations do show a good 

relationship between the qPCR data and Trinotate expression data, especially for the 

negative correlations.  

3.4 Bioinformatic Visualization of Potential Biomarkers  

The transcriptome data was visualized using various bioinformatics tools. The 

influence of sexual activation was visualized by comparing NSA vs CON and the 

influence of crude oil exposure was visualized by comparing EXP vs CON. The volcano 

plots in Figs. 18-19 both showed that the majority of the differentially expressed genes 

were up-regulated during sexual activation and that the crude oil exposure elicited a 

response at the genetic level. The comparison between the NSA testis vs the CON testis 

showed that the NSA testis had 139,931 genes down-regulated and 106,249 genes up-

regulated (which is to say sexual activation up-regulated 139,931 and down-regulated 
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106,249 genes). The comparison between the EXP testis vs the CON showed that the 

EXP testis had 76,931 genes down-regulated and 146,093 genes up-regulated. A study 

performed by Garcia et al., showed a volcano plot representing de novo assembled liver 

transcriptomes of (Fundulus grandis) exposed to the crude oil from the Deep Horizon oil 

spill in 2010 (2012). Similar complex genetic responses was observed with 1,070 down-

regulated and 1,251 up-regulated genes. It should be noted that the Garcia et al. study 

only focused on differentially expressed genes with a significance level of p < 0.01 while 

the present study did not. Also, the Garcia et al. study used different bioinformatics tools 

for their differential expression analysis (Bowtie for the aligner and DESeq for 

differential expression where this study employed STAR for the aligner and edgeR for 

the differential expression analysis). Nevertheless, the present study and that of Garcia et 

al. showed crude oil up-regulated more genes than it down-regulated. In order to discover 

novel genes involved in endocrine disruption and to investigate their interactions with 

other genes and biochemical pathways, the data visualization software, Cytoscape, was 

employed.  

The Cytoscape App ClueGo was used to investigate the interaction of the 

differentially expressed genes with in selected GO Categories (Estrogen, Ovary, 

Ovulation, Reproduction, Sex, Spermatogenesis, Testis, Steroidogenesis, Xenobio, 

Hypoxia, and Heat Shock) that had at least a LFC of +/-2 within the EXP vs CON group. 

The search term “Androgen” was used to further concentrate down the network. It was 

found that the“Regulation of Androgen Receptor Signaling Pathway” GO category node 

(circled in red) found with in the“Steroid Hormone Receptor Signaling Pathway” (black 
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nodes) was interacting with various groups of GO category nodes associated with 

“Response to Heat” (red nodes) and “Apopotosis” (blude nodes) as shown in the 

Cytoscape network Fig. 20. The interaction with the “Response to Heat” and “Apoptosis” 

GO category nodes supported the premise that the crude oil gavaged fish were 

responding to a stressful condition at both the cellular and molecular level 

To further this point, the chaperone nodes found with in the “Response to Heat” 

network contained genes assoicated with chaperone functions such as stabilizing new 

proteins for proper folding and refolding proteins that were damaged by cellular stress 

(De Maio et al, 1999). The presence of “Apoptosis” related GO category nodes also 

supported stressful conditions in crude oil gavaged fish. It has been shown that PAHs in 

crude oil can cause DNA damage through the formation of reactive oxygen species 

(ROS) (Taban et al., 2004). This is evident as various nodes within the “Apoptosis” 

network were related to responses associated with DNA repair and oxidative stress. 

Overall, this network shows that the androgen receptor pathway and associated steroid 

receptor pathways were responding to crude oil exposure both at the DNA and protein 

levels. 

The “Regulation of Androgen Receptor Signaling Pathway” node found within 

the “Steroid Hormone Receptor Signaling Pathway” network (Fig. 20) consisted of the 

following four differentially expressed genes within the EXP group: EP300, HDAC6, 

SIRT1, and SMARCA4. Interestingly, all four of these genes were also found in at least 

one of the response categories, “Response to Heat”, Fig. 22 or “Apoptosis”, Fig. 21, 

suggesting that these genes played a key role in the response to crude oil involving the 
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androgen receptor-signaling pathway. EP300, HDAC6, and SIRT1 were within both the 

“Response to Heat” and “Apoptosis” groups while SMARCA4 was only within the 

“Apoptosis” group. EP300 and HDAC6 were up-regulated in the EXP group compared to 

both the CON and NSA groups signifying that these genes were directly responding to 

the stress caused by the crude oil exposure. SIRT1 and SMARCA4 had the same down-

regulated expression patterns in both of the EXP and NSA groups showing that the 

sexually active crude oil exposed fish was behaving in the same fashion as the non-

sexually active fish.  

The down-regulated SIRT1 (Sirtuin 1) and up-regulated EP300 (histone 

acetyltransferase p300) have interesting relationships with detrimental pathways that 

might have been affected by the crude oil as seen in Fig. 28A. SIRT1 (Sirtuin 1) has been 

shown to deacetylate and thereby deactivate p53’s oxidative stress-induced apoptotic 

activity (Hori et al., 2013). The functional role of the EP300 is to regulate p53-dependent 

apoptosis after DNA damage (Lyer et al., 2004). Therefore, up-regulation of EP300 due 

to DNA damaged and the lack of inhibition of p53 activity due to down-regulation of 

SIRT1 would have increased levels of apoptosis in response to crude oil.  
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Fig. 28 Candidate biomarkers. A)  Candidates associated with apoptosis promotion 

(EP300, SIRT1 and SMARCA4). B) Candidates associated with impaired 

spermatogenesis (SMARCA4 and DNAJA1). C) Candidates responsible for suppressed 

androgen receptor transcriptional activation (HDAC6 and PTGES3) causing less 

androgen to be converted into estrogen by CYP19a. 
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The up-regulated HDAC6 (Histone deacetylase 6) and down-regulated 

SMARCA4 (Transcription activator BRG1) have interesting relationships with 

reproductive pathways that might have been affected by the crude oil as seen in Fig. 28. 

HDAC6 enhances histone deacetylase activity and thereby represses transcription 

(Aldana-Masangkay et al., 2011). SMARCA4 also represses transcription and research 

shows that SMARCA4 represses p53-dependent transcription (Lee et al., 2002). 

Additionally, it has been demonstrated that SMARCA4’s activity is crucial to the 

development of sperm (Kim et al., 2012). Therefore, the down-regulation caused by 

crude oil exposure would make males less fertile and be in keeping with the low 

expression levels of SMARCA4 found in the NSA group. Repression of transcription by 

up-regulated HDAC6 and down-regulated SMARCA4 and their possible influence on 

sperm development may be a significant finding of this work. 

In addition, up-regulated HDAC6 is associated with activation of HSP90 and 

Prostaglandin E Synthase 3 (PTGES3) as seen in Fig. 28C. (Ai et al, 2009, Chan et al, 

2015). PTGES3 is a co-chaperone to heat shock protein 90 that localizes to genomic 

response elements in a hormone-dependent manner and disrupts receptor-mediated 

transcriptional activation by promoting disassembly of transcriptional regulatory 

complexes (Forsythe et al., 2001). HSP90 and PTGES3 play a key role in androgen-

induced and androgen-independent nuclear localization as well as androgen receptor 

(AR) stabilization (Ai et al., 2009, Reebye et al., 2012). Stabilization of the AR is 

associated with maintaining the receptor in the active conformation while repressing its 

transcriptional activities, allowing it to bind AR ligands (Ai et al., 2009, Chan et al., 
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2015). Therefore, up-regulation of HDAC6, HSP90 and PTGES3 in the present study 

should result in suppression of CYP19a transcription, which supports the down-

regulation of CYP19a observed in PCR analysis of Day 7 exposed males (Figs. 3 and 9). 

Overall, these four key genes within the “Regulation of the Androgen Receptor Signaling 

Pathway” were responding to the crude oil making them great candidate crude oil 

biomarkers that can link molecular responses to reproductive effects.  

The genes highlighted within the concentrated volcano plots (Fig. 24) are other 

candidate biomarkers to link genetic responses to the crude oil exposure. These genes 

were selected based on meeting one of the following three criteria. First, they appeared in 

more than one heatmap. The involvement of a gene in more than one category gives the 

impression that they are one of the main genes either positively or negatively impacted by 

the crude oil. Second, gene expression patterns had a major influence in the selection of 

candidate biomarkers. Genes in the EXP group with same expression patterns as the NSA 

group were selected because the results implied that the sexually active fish in the 

exposed group were endocrine disrupted to the point of responding like non-sexually 

active fish. Third, in keeping with gene expression patterns, genes were selected in the 

EXP group that had the opposite response in the NSA group.   

The following genes appeared in all three heatmaps constituting the Steroid 

Receptor Signaling Pathway in Cytoscape (Fig. 20): PTGES3, EP300, SIRT1, HDAC6, 

and DNAJA1. The responses and consequences of PTGES3, EP300, SIRT1 and HDAC6 

are discussed above. DNAJA1, heat shock protein family (Hsp40) member A1, acts as a 

heat shock protein 70 co-chaperone by facilitating protein folding, trafficking, prevention 
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of aggregation, and proteolytic degradation (Terada et al., 2005). Terada et al. has shown 

that DNAJA1 mutant mice led to severe defects in spermatogenesis that involved 

aberrant androgen signaling (Terada et al., 2005). In this study, this gene was down-

regulated in EXP compared to CON indicating possible detrimental impacts on 

spermatogenesis by crude oil. This response was supported by the observed down- 

regulation of SMARCA4, which is known to have a similar effect. Overall, the 

concentrated volcano plots showed filtered candidate biomarkers that can be used in 

future studies.  

Conclusion 

To date, this research is the first report of an annotated overview for the testes 

transcriptome in F. heteroclitus, resulting in the most comprehensive genetic 

reproductive resource available for the species. In this study, the global expression 

patterns in response to crude oil exposure in killifish were profiled to shed light on the 

complex genetic responses to crude oil exposure. This research provided the groundwork 

for modern, relevant tools for studying the effects of crude oil on killifish populations by 

linking molecular biomarkers and impaired reproduction. As a result, candidate gene 

modules and biomarkers responsible for gonadal-derived reproductive disruption at the 

functional genomic level were identified: PTGES3, EP300, SIRT1, HDAC6, and 

DNAJA1. This work can provide a repository for future gene expression analysis, 

functional studies, and reproductive investigations in F. hetoroclitus. This will enhance 

the capabilities of population monitoring and can be used as a benchmark in comparative 

studies in other fish models. This data will be of interest to researchers using the killifish 
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in estuaries as bio-monitors to crude oil exposure. Overall, this research will open new 

opportunities and bring new insights for researchers studying F. heteroclituss. 
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