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Abstract 

The Drosophila genus contains thousands of different species. Drosophila 

melanogaster is the most popular Drosophila species used in biological research. 

Drosophila pseudoobscura is the model Drosophila species used in our laboratory and is 

a distant relative to D. melanogaster. Both of these species' genetic codes have been 

completely sequenced and are very different from each other genetically and 

morphologically. One major morphological difference between these two species is their 

testes structure. The testes of D. melanogaster are long, coiled, thin tube-like structures; 

D. pseudoobscura testes are wide and ellipsoidaL The focus of the current work was to 

characterize the apical end of D. pseudoobscura testes (which plays a pivotal role in the 

initiation of spermatogenesis) using antibodies available for the D. melanogaster testes. 

Using immunofluorescence techniques, we have characterized D. pseudoobscura 

adherent proteins in a specific region termed "the hub" responsible for maintaining the 

cells associated with the stem cell niche, using antibodies raised against the hub proteins 

in D. melanogaster. The hub proteins probed were fasciclin III, DE-cadherin and 

armadillo. Fasciclin III is a glycoprotein that is associated with adhering cells together 

within the central nervous system and other tissues, including the testis hub. DE-cadherin 

and armadillo are specifically associated with the stem cell niche of Drosophila species 

and serve to adhere the cells within the structure. In addition, we have characterized the 

ultrastructure of the seminal vesicles of D. pseudoobscura and have attempted to interpret 

the processes that occur in the storage and post-spermatogenesis maturation of 

Drosophila sperm cells. 
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Introduction 

I. Overview 

The most popular fly species model used in biology is D. melanogaster. D. 

melanogaster belongs to the melanogaster group of the Drosophila genus. Its genetic code 

has been completely sequenced and is often used to compare the genetic variation of other 

species of Drosophila. In addition to D. melanogaster, eleven other Drosophila species 

(chosen based on evolutionary distance from D. melanogaster) genomes have been 

sequenced (Figure 1; Gilbert, 2007). One of these species, D. pseudoobscura, is of particular 

interest to our lab as we have developed a system for culturing the spermatogenic cysts 

isolated from the testes (Njogu et aI, 2010; Ricketts et aI, 2011). Additionally, we have 

characterized the sperm DNA binding proteins, called protamine-like proteins, involved in 

chromatin compaction during spermatogenesis (Alvi et al, 2012). In the current work, we 

sought to characterize the region of the D. pseudoobscura testes called the stem cell niche. 

The stem cell niche is the region of the testes where spermatogenic stem cells proliferate for 

the life of the adult fly. The stem cell niche is well characterized in D. melanogaster (Hardy 

et aI, 1979; Singh et al, 2010; Sheng et aI, 2011). However, the structure of the niche has not 

been explored in any other Drosophila species. As described below. D. pseudoobscura is 

interesting because the morphology of the testes is very unusual as compared to other 

Drosophila testes. We hypothesized that the structure of the stem cell niche may also exhibit 

significant variation as compared to D. melanogaster. 
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Figure 1; A phylogenic tree of Drosophila species whose genomes 
have been completely sequenced. (Modified from Gilbert, 2007) 

3 




II. Testes Structure of Drosophila Species 

As shown in Figure 2, the D. melanogaster testes are long, thin tube like structures. 

The apical end is isolated while the basal end of the testes coils around the seminal vesicles. 

The color of the testes is a light yellow-green. As shown in Figure 3, the D. pseudoobscura 

testes are large, oblong shaped structures. The apical ends of the testes are large and wide and 

the basal end thins out and is directly connected to the seminal vesicles without coiling 

around them. The color of the testes is a bright orange-red. Because of the striking difference 

in morphology, we speculated that the arrangement of spermatogenic cells and structures 

within the lumen of the testis may also be different. 

III. Spermatogenesis in Drosophila 

Spermatogenesis is a complex process where sperm cells develop from stem cells within 

the testes. Germ line stem cells (GSCs) and cyst progenitor cells (CPCs) located in the stem 

cell niche at the apical end of the testes receive signals from a cluster of somatic cells known 

as the hub. After the stem cells divide; one of the daughter cells remains connected to the 

niche and remains a stem cell, the other cell differentiates into mature sperm. The germ line 

stem cell differentiates to a gonialblast cells and the progenitor cyst cell differentiates to a 

cyst cell (Gonczy et al. 1996). The gonialblasts are encased in two cyst cells and are pushed 

through the length of the testes from the stem cell niche to the basal end of the testes as they 

undergo a series of incomplete mitotic divisions which will result in spermatogonia. There 

are four mitotic divisions that occur in D. melanogaster testes, five mitotic divisions that 

occur in D. pseudoobscura testes (Scharer et al. 2008). A growth phase occurs so the 

spermatogonia differentiate to spermatocytes. Once the growth phase of spermatocytes is 
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complete, two meiotic divisions occur to develop spermatid cells. These spermatid cells 

undergo a series of transformations via a process called spermiogenesis and are transferred 

from the basal end of the testes to the seminal vesicles where they are stored (Tokuyasu et al. 

1972, 1974, 1975). The arrangement of cell types found with the fly testis is shown in Figure 

4. 

The focus of current work was to study the apical end of the testes in D. pseudoobscura, 

specifically the stem cell niche. The stem cell niche is at the tip of the structure and contains 

three major types of cells; germ-line stem cells, cyst progenitor cells, and a cluster of somatic 

cells known as hub cells (Sheng et al. 2011). The hub cells are concentrated together to form 

the structure called the hub. The hub directs signals to the germ-line stem cells and cyst 

progenitor cells that allow them to divide and differentiate when necessary (Riparbelli et al. 

2(05). 

IV. Characterization of the Apical Drosophila Testes 

The apical end of the D. melanogaster testes was first characterized using transmission 

electron microscopy by R.W. Hardy in 1979. The characterization showed a detailed image 

of the proliferation center of the testes known as the hub, and the germ line stem cells and 

cyst progenitor cells attached to the hub. Now known as the stem cell niche, this area in the 

testes is the starting point of spermatogenesis in fruit flies. 

Because the testes of D. pseudoobscura are very different from the testes of D. 

melanogaster, we hypothesized that the structure of the apical end of the testes including the 

stem cell niche may also be quite different. 
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Figure 2; Bright field image of D. melanogaster testes. A apical 
end of the testes. B seminal vesicles. C - accessory glands. D
ejaculatory bulb. E - ejaculatory duct. The stem cell niche is 
located in the apical end of the testes. Scale bar is 250 11m 
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Figure 3; Bright field image of D. pseudoobscura testes. A apical end of the 
testes. B seminal vesicles. C - accessory glands. D - ejaculatory bulb and duct. 

Scale bar is 250 f.tm 
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Figure 4; A simplified depiction of Drosophila spermatogenesis, showing the stem 
cell divisions, gonial amplification and spermatid differentiation. H - cluster of 
somatic cells known as the hub. S - stem cel1s (GSCs and CPCs) associated with 
the hub. Mitotic divisions of proliferating GSCs known as gonial cells are shown. 
Proliferated CPCs known as cyst cells encase the dividing gonial cells. Adapted 
from Fuller, 1998. 
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Our goal was to use immunofluorescence techniques to characterize proteins of the hub 

in the stem cell niche of D. pseudoobscura with antibodies raised against the same proteins in 

D. melanogaster (Sheng et al. 2011). Proteins DE-cadherin and armadillo act as adherent 

molecules to keep the hub cells together and keep germ line stem cells and cyst progenitor 

cells attached to the hub to prevent them from differentiating (Myster et al. 2003). 

Drosophila fasciclin III is a glycoprotein that plays a role in the adhesion of cells within the 

central nervous system and other tissues, including the stem cell niche in the testes (Snow et 

al. 1989). These three proteins are known to be located in the stem cell niche and have been 

well-characterized in D. melanogaster. 

Several studies have employed the use of these antibodies to investigate processes 

associated with the stem cell niche of D. melanogaster. The stem cell niche was identified 

previously in D. melanogaster, when investigators were identifying the somatic stem cells 

associated with it with the utilization of anti-fasciclin III and DE-cadherin antibodies (Voog 

et aI, 2009). The adherent junction, which consisting of the adherent proteins DE-cadherin 

and armadillo, plays a major role in the polarizing of embryonic epithelial cells in female D. 

melanogaster (Huang et aI, 2011). In studying the dynein light chain 1 in somatic cyst cells, 

the investigators used the antibodies for the DE-cadherin and armadillo proteins to view the 

loss of their function when the cell signaling is disrupted (loti et aI, 2011). 

V. Ultrastructure of the Drosophila Seminal Vesicles 

High resolution details of the tissue morphology of fruit fly testes is available for very 

few species, and only D. melanogaster has been characterized in a systematic manner, at 

least for the testes. Previous work has characterized the ultrastructure of testes of several 
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fruit fly species using transmission electron microscopy. Hardy and Tokuyasu are well 

known for their work in describing the cellular processes of D. melanogaster testes (Hardy et 

al; 1979. Tokuyasu et al; 1972, 1974, 1975). The structure of the stem cell niche and all of 

the cells associated with the structure have been described in detail using transmission 

electron micrographs of the apical end of D. pseudoobseura (Hardy et al; 1979). Processes of 

spermiogenesis including the individualization of sperm, the coiling process, nuclear 

transformation, and head to tail alignment of the sperm in the testes of D. melanogaster were 

described using transmission electron microscopy (Tokuaysu et al; 1972, 1974, 1975). The 

morphology of the testes of the Mexican fruit fly, Anastrepha ludens, has similar 

characteristics to D. pseudoobseura testes and has been described ultrastructurally (Valdez et 

al, 200 I). In the current work, we characterized the ultrastructural morphology of the seminal 

vesicles of D. pseudoobseura using transmission electron microscopy. The walls of the testes 

and seminal vesicles are composed of an outer pigment layer and an inner smooth muscle 

layer, similar to what has been reported for D. melanogaster and Anastrepha ludens (Sarno, 

et aL 2011). The epithelium of the seminal vesicles in D. pseudoobseura has a convoluted 

morphology that is similar to what has been reported in D. bifurea (Pitnick et al, 1995). This 

is interesting because these species are very distantly related and the gross morphology of 

their seminal vesicles is very different. 
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Materials and Methods 


I. Fly Stock and Cultures 

Fly stocks were attained from the University of California San Diego Drosophila Species 

Stock Center. Fly species were cultured separately in our laboratory in plugged vial 

containing Jazz Mix Drosophila media (Fisher Scientific) at 250C 

II. Drosophila Dissection for Immunofluorescence 

Adult flies 24 - 48 hours in age were anesthetized by placing plugged vials containing 

the flies on ice for about 5 minutes. Male flies were removed from the vial and placed on a 

depression slide in IX phosphate buffer saline (PBS). Testes were removed from the 

abdomen by carefully cutting the end of the abdomen using very fine probes and pushing the 

testes out. 

III. Immunofluorescence Staining ofDrosophila meianogaster Testes 

D. melanogaster testes were dissected in IX PBS and then placed in 4% formaldehyde in 

PBST (IX PBS, 0.1% Triton X-lOO) for 40 minutes. Testes were then rinsed in PBST 3 

times for 2 minutes each and placed in a 1: 1 0 concentration of bovine serum albumin (BSA) 

in PBST and left overnight in 4°C. Mter 12 hour incubation at 4°C, the testes were rinsed in 

PBST 3 times for 15 minutes each. They were then placed in a primary antibody - PBST 

solution (1 :50 anti-fasciclin III, 1 :50 DE cadherin, 1 :50 armadillo), All primary antibodies 

were obtained from the Developmental Studies Hybridoma Bank. The testes were incubated 

at 40C for 12 hours. After the second incubation, the testes were washed in PBST 3 times for 

15 minutes each. They were then placed in their respective secondary antibody - PBST 
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solution; 1:1000 Alexa-fluor 488 goat anti-mouse for anti-fasciclin III and armadillo treated 

testes and 1: 1000 Alexa-fluor 488 rabbit anti-rat for DE cadherin treated testes. All 

secondary antibodies were obtained from Sigma-Aldrich. They were incubated for 12 hours 

in 4<>C.Control samples were processed in the exact same way as the experimental samples 

except that the primary antibody was eliminated from the protocol. 

After the third incubation, the samples were washed again in PBST 3 times for 15 

minutes each. A slide was prepared with a droplet of MOWIOL mounting medium 

containing 5 Ilg/ml DAPI to counterstain the nuclei. The testes were then placed in the 

mounting solution and covered with a coverslip. The samples were then viewed on an 

Olympus FV 1000 confocal laser scanning microscope (CLSM). 

IV. Immunofluorescence Staining ofDrosophUa pseudoobscura Testes 

D. pseudoobscura testes were dissected in IX PBS and placed in ice cold methanol and 

stored in 4<>C for 30 minutes. Immediately after the 30 minute incubation, the testes were 

transferred to ice cold acetone and stored in 4<>C for 15 minutes. The testes were washed for 2 

minutes in PBST 3 times. They were placed in a 1 :10 bovine serum albumin (BSA) - PBST 

solution and stored in 4<>C for 12 hours. After 12 hours, the testes were rinsed in PBST 3 

times for 15 minutes each. They were then placed in a primary antibody - PBST solution 

(1:10 anti-fasciclin III, 1: 10 DE cadherin, 1: 10 armadillo). They were left in 4°C for 12 

hours. After the second incubation, the testes were washed in PBST three times for 15 

minutes each. They were then placed in their respective secondary antibody - PBST solution; 

1:500 Alexa-fluor 488 goat anti-mouse for anti-fasciclin III and armadillo treated testes and 

1 :500 Alexa-fluor 488 rabbit anti-rat for DE cadherin treated testes (DSHB). They were 
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incubated for 12 hours in 4oC. Control samples were processed in the exact same way as the 

experimental samples except that the primary antibody was eliminated from the protocol. 

After the third incubation, the samples were washed again in PBST three times for 15 

minutes each. A slide was prepared with a droplet of MOWIOL mounting medium 

containing 5 Jlg/ml DAPI. The testes were then placed in the mounting solution and covered 

with a coverslip. The samples were then viewed on an Olympus FV 1000 CLSM. 

V. BLAST Analysis and T-Coffee Alignment of Hub Proteins 

BLAST searches of the three hub proteins of interest (DE-cadherin, fascicilin ITI, and 

armadillo) were performed using NCBr BLASTp 

(http://blast.ncbi.nlm.nih.govlBlast.cgi?CMD=Web&PAGE _ TYPE=BlastHome). The amino 

acid sequences for D. melanogaster DE-cadherin, fasciclin ill, and armadillo were selected and 

chosen to undergo a BLAST analysis against the genome ofD. pseudoobscura species. The top 

result for each protein BLAST contained the same or a similar amino acid sequence of the 

protein in D. pseudoobscura based on the protein chosen from D. melanogaster. The E value and 

the percent coverage of the top match were recorded. 

Once the BLAST analyses were completed, the entire amino acid sequence of each D. 

melanogaster hub proteins and the top matched result corresponding to the same protein in D. 

pseudoobscura were aligned using T -Coffee software 

(http://tcoffee.crg.catlapps/tcoffeeldo:regular) to show the exact corresponding amino acid 

matches for each of the three hub proteins analyzed. 

13 


http://tcoffee.crg.catlapps/tcoffeeldo:regular
http://blast.ncbi.nlm.nih.govlBlast.cgi?CMD=Web&PAGE


VI. Confocal Imaging and Visualization ofDrosophila pseudoobscura Image Stacks 

An Olympus FVIOOO CLSM was used to obtain the high resolution images ofD. 

melanogaster and D. pseudoobscura testes. The testes were imaged using a 40X oil 

immersion lens. A 488 argon laser was used to excite the Alexa~fluor 488 secondary 

antibodies present in the sample. A 405 nm laser was used to excite the DAPI stain within 

cell nuclei. Image stacks of the entire testis were collected by assigning points of depths of 

the testis image to be recorded and the thickness of sections were optimized to ensure full 

detail of the area of interest. Sections of the tissues were collected at a sampling speed of 10 

microseconds per pixel and at a resolution of 1024 x 1024. Recorded image stacks visualized 

using the computer program Imaris (Bitplane Inc.). 

VII. 	 Transmission Electron Microscope Preparation of Drosophila pseudoobscura 

Testes, Seminal Vesicles, and Accessory Glands 

Adult D. pseudoobscura flies aged 24 ~ 48 hours were anesthetized on ice for five 

minutes. Male flies were then transferred to a depression slide containing a 2.5 % 

glutaraldehyde in 0.1 M cacodylate buffer. The testes were removed from the abdomen using 

fine probes. Once the testes were removed from the fly, syringe needles were used to 

accurately cut and separate the testes, seminal vesicles, and accessory glands. The samples 

were incubated in the glutaraldehyde fixative solution for one hour at room temperature and 

then rinsed with 0.1 M cacodylate buffer three times for five minutes each. Under a fume 

hood, samples were then post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 

hour at room temperature. Samples were then rinsed with 0.1 M cacodylate buffer three times 

for five minutes each under the fume hood. 
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Samples were removed from buffer and dehydrated in an ethanol series. Samples were 

placed in 50% ethanol (EtOH) for 15 minutes. After 15 minutes in 50% EtOH, samples were 

placed in 70% EtOH for another 15 minutes. Samples were then placed in 95% EtOH for 20 

minutes (two changes), followed by placement in two changes of 100% EtOH for 20 minutes 

each. 

Samples were then infiltrated with plastic resin by removing the samples from 100% 

EtOH and placing in 100% acetone for 20 minutes. After 20 minutes, the testes were placed 

in a 1: I resin medium - acetone solution for 1 hour. After 1 hour, samples were transferred 

from the 1: I solution to a 2: 1 resin medium - acetone solution and allow them to incubate 

overnight at room temperature on a rotator. The resin used was Embed-812 (Electron 

Microscopy Sciences). 

The following day, samples were embedding in resin by removing the samples from the 

2:1 solution and placing them in 100% resin for 1 hour on a rotator. After an hour, samples 

were transferred to fresh 100% resin and allowed to incubate on the rotator for 1 - 6 hours. 

Samples were then transferred from the 100% resin to molds that were partially filled with a 

resin - accelerator solution. Samples were positioned so they were located at the center of the 

tip of the mold. The remainder of the mold was filled with resin - accelerator solution and 

placed in an oven overnight at 60oC. 

Once hardened, the sample blocks were removed from the molds, sectioned on an 

ultramicrotome, stained with uranyl acetate, and viewed on an FEI Tecnai Spirit transmission 

electron microscope located at the College of Staten Island. 
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Results 


I. Immunofluorescence Staining Overview 

Staining the stem cell niche of D. melanogaster was successful using all three of the 

antibodies that were raised against the proteins for this species. However the fixation used for 

the D. melanogaster testes was not successful for the staining of the stem cell niche of the D. 

pseudoobscura. Using a methanol/acetone fixation, the antibody for the fasciclin III protein 

successfully stained the proteins in the hub in D. pseudoobscura. However, regardless of 

fixation method, we were unsuccessful in staining for DE-cadherin and armadillo in D. 

pseudoobscura. The staining and fixation protocols tested are summarized in Table 1. 

II. Immunofluorescence Staining of Drosophila melanogaster Testes 

Using known antibodies raised against the proteins located in the hub of D. melanogaster 

testes, the stem cell niche was characterized and served as a positive control for the 

experimental protocols for staining the stem cell niche of D. pseudoobscura. Anti-fasciclin 

III antibodies respond to glycoproteins that allow the somatic cells of the hub adhere to one 

another. The confocal images in Figures SA and 5B show D. melanogaster testes with a 

small circular structure - the hub - located at the apical end of the testes. The blue DAPI stain 

counterstains the nuclei of the cells within the area. The DE-cadherin antibody responds to 

adherent molecules that keep hub cells clustered together and maintains the interaction of 

GSCs and CPCs to the hub. The images shown in Figures 5C and 5D represent the the apical 

end of D. melanogaster testes where positive staining of DE-cadherin in the hub is seen. 

Armadillo staining of the hub cells in D. melanogaster is shown in Figures 5E and SF. 

Staining of the hub was not seen in negative controls (not shown). 
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III. Immunofluorescence Staining of Drosophila pseudoobscura Testes 

i. Anti-fasciclin III 

The staining of the hub in the apical end of the D. melanogaster testes using the three 

raised against the known proteins within the structre indicated that the immunofluorescence 

staining of the hub was successful in D. melanogaster to serve as a positive control for using 

these antibodies in D. pseudoobscura testes. 

Anti-fascicIin III was the primary antibody that was successful in staining the hub-like 

structure of D. pseudoobscura. The structure stained in the testes of D. pseudoobscura is 

very large formation that fills a large portion of the depth and area of the apical end. Figure 

6B shows a side view of the testes stained with the anti-fasciclin III antibody. Figures 6C, 6D 

and 6E are also side view images of the testes stained with anti-fasciclin III antibody. The 

DAPI stain was omitted to highlight the hub-like structure and the depth it takes up within 

the apical end of the testes. Figure 6F is a top view of the apical end of the testes that depicts 

the area that the hub structure encompasses. Figure 6A is a D. pseudoobscura control testis 

that was not exposed to the anti-fasciclin III primary antibody but was treated with the 

secondary antibody. The hub was not stained in control samples. 

ii. DE-cadherin and armadillo antibodies 

Unlike anti-fascicIin III, the primary antibodies against DE-cadherin and armadillo did 

not successfully stain the hub-like structure within the apical end of the D. pseudoobscura 

testes that we saw with anti-fascicIin staining. 
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Species Fixation 

Ome! 4% Formaldehyde 

Ome! 4% Formaldehyde 

Ome! 4% Formaldehyde 

Opse 4% Formaldehyde 

Opse 4% Formaldehyde 

Opse 4% Formaldehyde 

Opse Methanol/Acetone 

Opse Methanol/Acetone 

Opse Methanol/Acetone 

Antibody Successful 

Anti-Fasciclin Yes 
III 

DE Cadherin Yes 

Armadillo Yes 

Anti-Fascicl in No 
III 

DE Cadherin No 

Armadillo No 

Anti-Fasciclin Yes 
III 

DE Cadherin No 

Armadillo No 

Table 1; A depiction of which antibodies and fixations were able to result in a successful 
immunofluorescent staining of the stem cell niche in the apical end of the Drosophila testes. 4% 
formaldehyde fixation was unsuccessful at staining the stem cell niche of D. pseudoobscura testes. 
Methanol/acetone fixation was successful in staining the stem cell niche with anti-fasciclin III 
antibody. 
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Figure 5: D. melanogaster testes stained with anti-fasciclin, DE-cadherin and armadillo. (A and 
B) The hub of the stern cell niche of the D. melanogaster testes that have been stained with the 
anti-fasciclin III primary antibody. The nuclei are stained blue with DAPI. (C and D) The hub of 
the D. melanogaster stained with the DE-cadherin primary antibody. (E and F) The hub of the D. 
melanogaster stained with the armadillo primary antibody. Control samples were not exposed to 

any of the primary antibodies and showed no staining of the hub structure (not shown). Scale bars 

for all panels = 20 f..lm. All structures were recorded under same magnification. 
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Figure 6: D. pseudoobscura testes stained with anti-fasciclin. (A) Apical end of a D. 
pseudoobscura testis that was not exposed to anti-fasciclin III primary antibodies (control). 
The nuclei are stained blue with DAPI. (B) Side view of aD. pseudoobscura testes showing 
the hub structure. (C - E) Side views of the apical end of D. pseudoobscura testes with the hub 
of the stem cell niche stained with the anti-fasciclin III antibody. The DAPI emission has been 
omitted to show the hub more clearly. (F) Top view of the apical end of aD. pseudoobscura. 

Scale bar in all panels =20 !lm. All structures were recorded at the same magnification. 
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Figures 7 A and 7B show side view images of the apical end of D. pseudoobscura testes 

that were treated with the DE-cadherin primary antibody. The hub-like structure found in the 

anti-fasciclin treated samples was not seen in these samples. Figures 7C and 7D show side view 

images of the apical end of D. pseudoobscura testes that were treated with the armadillo primary 

antibody. Similar to the samples treated with DE-cadherin, the hub-like structure was not 

detected within these samples. 

IV. 	 Transmission Electron Microscopy of the Seminal Vesicles of Drosophila 

pseudoobscura 

Figure 8A, 8B and 8C are transmission electron micrographs of the tissue layers that 

make up the seminal vesicles of D. pseudoobscura. The outer layer is a thick pigment layer that 

gives the testis its bright orange-red color. A thick smooth muscle layer is present for the use of 

peristalsis and the movement of mature sperm down the seminal vesicle. The next layer is 

composed of epithelium that probably plays a role in the maintenance of those cells. Figure 8D is 

a detailed image of a septate junction that connects two epithelial cells together. Figure 8E shows 

a cross sectional view of epithelial layer. The dark thin structure between the epithelium layer 

and the area containing sperm cells may be microvilli or stereocilia cross sections which suggests 

that the epithelial layer interacts with the sperm cell environment. Figure 8F is a low 

magnification view of the area containing mature sperm in the seminal vesicle. The large 

structures within the area may be waste bags; however it is possible that these structures are 

involved in the maintenance of the mature sperm cells within this environment. 
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Figure 7: D. pseudoobscura testes stained with DE-cadherin and armadillo. (A and B) 
Apical ends of D. pseudoobscura testes that were exposed to DE-cadherin primary 
antibody; however the hub cells were not detected. The nuclei are stained blue with DAPI. 
(e and D) Apical ends of D. pseudoobscura testes that were exposed to armadillo 
antibody; however the hub cells were not detected. The nuclei are stained blue with DAPI. 
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Figure 8: Transmission electron micrographs of the seminal vesicles of D. pseudoobscura. (A) 
Low magnification view of pigment layer (Pi), smooth muscle layer (SM), epithelium (Ep) and 
mature sperm (Sp) (from right to left). (B) High magnification of the wall layers shown in (A). 
(C) Pigment layer, muscle layer and epithelium. (D) Septate junction (SJ) between two 
epithelial cells. (E) Cross sectional view of probable microvilli (M) of the seminal vesicle 
epithelium. (F) Low magnification view of mature sperm in the seminal vesicle, possible waste 
bags (WB) located within the mass of sperm. 
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Discussion 


I. Immunofluorescence of the Stem Cell Niche in the Drosophila melanogaster Testes 

The stem cell niche of the apical end in D. melanogaster was successfully stained using 

all three of the antibodies raised against each protein. The hub in D. melanogaster takes up a 

small part of the tip of the apical end of the testes. In the testes that were exposed to the 

antibodies anti-fasciclin III and armadillo, the hub appears to be a small, circular orb of 

several cells which means that these specific proteins are highly concentrated within this 

cellular area. In the testes that were exposed to DE-cadherin antibodies, the cells of the hub 

appear to be not so clustered together. This result may be interpreted to mean that DE

cadherin proteins are expressed in a dispersed pattern within the stem cell niche. The staining 

patterns reported here for D. melanogaster are consistent with previous reports on staining of 

the hub cells using anti-fasciclin III (Snow et ai, 1989), anti-armadillo (Myster et al, 2(03) 

and anti-DE-cadherin (Voog et aI, 2(09) antibodies. 

Because all three of the protein-antibody interactions were successful in D. melanogaster, 

these results can be utilized as the positive control when associating these antibodies to the 

same proteins in a different species, in this case D. pseudoobscura. 

II. Immunofluorescence of the Stem Cell Niche in the Drosophila pseudoobscura Testes 

i. Anti-fasciclin III 

BLAST analysis and T -Coffee alignments of the DE-cadherin, armadillo, and fasciclin 

proteins of D. pseudoobscura reveal very close or nearly exact matches for the same proteins 

in D. melanogaster (Figures 9-14); therefore we hypothesized that the antibodies and 

fixation techniques could be used to fluoresce the hub cells of the stem cell niche in D. 
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pseudoobscura. However using the exact methodology used for D. melanogaster was not 

successful for any of the antibodies used for D. pseudoobscura. 

Ice cold methanol and ice cold acetone fixation yielded results for anti-fasciclin III of D. 

pseudoobscura hub cells. In D. pseudoobscura, the hub appears to be a very large structure 

that is wide enough to fill the apical end and extends deep into the structure of the testes. 

This is a major difference when compared to the hub of the D. melanogaster testis. The D. 

melanogaster hub is a small concenetrated set of cells localized is a small area of the apical 

end, whereas the D. pseudoobscura hub takes up a majority of the apical end and the cells are 

not as concentrated in a single area, rather there appears to be many more cells present in the 

hub that extend through the depth of the apical testis. To the best of our knowledge, this is 

the first report on the structure of the stem cell niche in a species other than D. melanogaster. 

The unusual structure of the hub in D. pseudoobscura is consistent with the unusual 

morphology of the testes themselves. 

ii. DE-cadherin and armadillo 

We were able to stain the hub in D. pseudoobscura testes using one of the antibodies, 

anti-fasciclin III, however we were unsuccessful in staining the hub using either DE-cadherin 

and armadillo primary antibodies. The reason why the two antibodies did not fluoresce the 

hub is unknown. Unlike previous complications with the 4% formaldehyde fixation step 

between the two species of Drosophila, we were able to successfully stain the 
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Figure 9: Blast analysis of fasciclin III protein in D. pseudoobscura compared to D. 

melanogaster. The query sequence is D. melanogaster. The best match for D. 
pseudoobscura is the first row (*). Result: 91 % identical 
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Figure 10: T-Coffee alignment of Fasciclin III protein sequence comparison from D. 
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Figure 11: BLAST analysis of DE cadherin protein in D. pseudoobscura compared to D. 
melanogaster. The query sequence is D. melanogaster. The best match for D. 

pseudoobscura is the first row (*). Result: 99% identical 
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Figure 12: T-C-offee alignment of DE-cadherin protein sequence comparison 

from D. pseudoobscura and D. me/onogaster. 
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Figure 13: BLAST analysis of armadillo protein in D. pseudoobscura compared to D. 
melanogaster. The query sequence is D. melanogaster. The best match for D. 

pseudoobscura is the first row (*). Result: 100% identical. 
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Figure 14: T-Coffee alignment of armadillo protein sequence comparison from 

D. pseudoobscura and D. melanogaster. 
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hub with anti-fasciclin III using the methanol and acetone fixation but not with the DE

cadherin and annadillo antibodies. 

III. 	 Transmission Electron Microscopy of the Seminal Vesicles ofDrosophila 

pseudoobscura 

Our results show ultrastructural features of D. pseudoobseura seminal vesicles not 

previously reported. To the best of our knowledge, the ultrastructure of the seminal vesicle 

in the genus Drosophila has only been reported for D. bifurea - a distant relative of D. 

pseudoobseura (Joly et aI., 2003). 

The tissue layers of the seminal vesicle begins with a large pigmented layer that gives the 

organ the orange-red color which is similar to the characteristics of the Mexican fruit fly, 

Anastrepha ludens (Valdez et al. 200 1). The next layer is a large smooth muscle layer. The 

smooth muscle layer found in our study of D. pseudoobseura appears to be thicker and more 

well-developed than that found in D. bifurea. The smooth muscle allows for slight movement 

of the mature sperm through the seminal vesicles via peristalsis which allows for sperm to 

enter and be stored in the seminal vesicles. The even larger epithelial layer followed the 

smooth muscle layer of the seminal vesicle. The epithelium of the seminal vesicle is bound 

together by highly convoluted septate junctions. These junctions have been previously 

reported in a specific structure found in an unusual organ in D. bifurea called the sperm roller 

(Joly et aI., 2003) which is continuous with the seminal vesicle. However, the convoluted 

nature of the junction, and the junction itself, has not been specifically reported for the 

seminal vesicle of any other Drosophila species. 

33 




In the epithelium layer closer to the mature sperm cells, there appear to structures which 

may represent microvilli or stereocilia that may interact with the mature sperm cells. 

Interstingly, the mammalian sperm storage organ called the epididymis, which may be 

considered to be analogous to the fly seminal vesicle, is also lined with epithelium that have 

numerous microvilli projections (Primiani et aI, 2(07). The epididymis is known to playa 

role in post meiotic maturation of mammalian cells (Nath et ai, 2012); however it is unknown 

if the seminal vesicles serve a similar function in fly sperm maturation. The similarity in 

morphology may suggest the epithelium in the fly seminal vesicles plays a similar role. In 

one study using rat epididymus, researchers have observed membrane bound vesicles around 

stereocilia within the epithelium that contain various enzymes which are believed to maintain 

the environment of the sperm cells present (Fornes et ai, 1995). 

In the area of the seminal vesicles where the mature sperm are stored, we noted large 

structures which may be waste bags. Waste bags are structures that form as a result of one of 

the final stages of spermiogenesis where excess cytoplasm and organelles are eliminated 

from the sperm cells in the testes (Metzendorf et ai, 2010). Similar to the septate junctions 

between epithelium cells, the apparent waste bags seen in the seminal vesicles in the current 

study have not been previously reported. The function of these structures is unknown. If 

these structures are not waste bags, it is possible that their function is to maintain the 

environment of the stored sperm cells. 

IV. Future Directions 

After a successful immunofluorescence staining of the presumed hub in the apical end of 

the testes of D. pseudoobscura using anti-fasciclin III, the goal is to stain this structure again 
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using at least one of the antibodies for DE-cadherin and armadillo that are raised against the 

proteins of the hub structure using protocols that will be further adjusted. Staining of the hub 

with additional antibodies would allow us to confidently claim that the structure of the stern 

cell niche in the apical end of D. pseudoobscura testes is significantly different from the 

apical end of D. melanogaster testes. 

Transmission electron microscopy can be used to understand the ultrastructure of the 

reproductive organs and the processes that occur within them, and can be used to describe the 

differences between D. melanogaster and other species. We will continue to characterize the 

ultrastructure of the reproductive organs of D. pseudoobscura using TEM. 
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