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Abstract 

Kaposi's sarcoma-associated herpesvirus is an enveloped virus that contains 

glycoproteins which enable viral spread from host to host, attachment to the host cell, and 

host specificity. Herpesviruses are made up of different subfamilies including: alpha, 

beta and gamma and specific glycoproteins are conserved among the subfamilies. It has 

been observed that the murine gamma-herpesvirus 68 (MHV-68) contains an open 

reading frame (ORF) 27 which encodes a type I1 transmembrane glycoprotein. MHV-68 

ORF27 is expressed on the outside of infected cells but is found intracellularly when 

expressed alone in cells. Another O W  found in MHV-68,ORF58, was discovered to be 

essential in the proper translocation of MHV-68 ORF27 from the cytoplasm of the cell to 

the surface of the infected cell. OW58 deficient cells revealed that OW27 was produced 

in typical amounts but was located to the endoplasmic reticulum. When both genes were 

co-expressed they formed a protein complex which reached the cell surface. There is 

nucleotide sequence homology between MHV-68 OW27 and KSHV ORF27 (42% 

similarity), and between MHV-68 ORF58 and KSHV OW58 (41% similarity) 

suggesting the proteins would have similar functions. In this study, I will attempt to 

investigate the localization and co-localization of KSHV ORF27 and KSHV ORF58 

when expressed alone and together. KSHV ORF27 and ORF58 plasmid constructs were 

transfected into Vero cells and localization of OW27 was observed within the cytoplasm 

of the cell using immunofluorescence. KSHV ORF58 protein was not expressed 

properly; therefore, localization within the cell was not observed. Further experiments 

must be carried out to determine what is happening to the KSHV ORF58 protein. 



Introduction 

Dr. Moritz Kaposi first documented purple lesions affecting elderly men, 

particularly of Mediterranean decent, in 1872, and since then the disease associated with 

these lesions, known as endothelial neoplasms, is referred to as Kaposi's sarcoma (KS) 

(Dourmishev et al., 2003). A new human herpesvirus was discovered within the lesions 

of KS patients and was termed Kaposi's sarcoma-associated herpesvirus (KSHV), also 

known as human herpesvirus 8 (Changet al., 1994). KSHV DNA has been isolated from 

people suffering from KS, multicentric Castleman's disease (MCD) and primary effusion 

lymphoma (PEL) (Ablashi et al., 2002). 

KS is a vascular tumor made up of many different cell types including endothelial 

cells, erythrocytes, inflammatory cells and elongated endothelial cells known as "spindle" 

cells (Dourmishev et al., 2003; Lint et al., 2009). Red blood cells are often present in the 

lesions and are found between the spindle cells, giving the "purple" color to the lesion. 

As the disease progresses, the spindle cells ultimately are the major cell population at 

which point they begin to compress the vascular slits causing the lesions to become 

nodular (Ablashi et al., 2002). KSHV was found 95% of the time in vascular endothelial 

cells and "spindle" cells of KS lesions (Ablashi et al., 2002; Russo et al., 1996; Wen et 

al., 2010). 

KSHV has been associated with all four forms of KS, which are classified as: 

classic (Mediterranean region), epidemic (AIDS-associated), endemic (African region) 

and iatrogenic (transplant recipients) (Ablashi et al., 2002; Dourmishev et al., 2003). 

Classic KS, described by Dr. Kaposi, usually occurs in MediterraneadEastem European 



elderly men (Hengge et al., 2002b). KS occurrence in the Mediterranean is about ten- 

fold higher than Europe and the United States (Dourmishev et al., 2003). The lesions and 

nodules are normally located on the extremities of the body with little involvement of 

internal organs or lymph nodes (Hengge et al., 2002b). 

AIDS-associated KS can spread both viscerally and through the lymph system 

more so than any other form (Wen et al., 2010). Approximately 30% of AIDS patients 

exhibited KS as the first symptom of AIDS (Greene et al., 2007); as a result, KS was 

considered an AIDS defining illness (Wen et al., 2010). AIDS-KS affects the skin, 

lymph nodes, and may also include lungs, gastrointestinal tract, liver and spleen (Ablashi 

et al., 2002). AIDS-KS is usually found on the head and neck and develops rapidly 

(Dourmishev et al., 2003). KS lesions can become tumors and visceral diffusions, which 

can lead to organ failure and finally death (Dourmishev et al., 2003). KS is still the most 

prevalent AIDS-associated cancer in the world (Wen et al., 2010). 

Endemic KS is traditionally found throughout Eastern and Central Africa, and it 

affects younger and older people (Wen et al., 2010). It is found in four distinct disease 

patterns: similar to classic KS; a more aggressive form invading soft tissue and bone; 

florid mucocutaneous and visceral disease; and fulminant lymphadenopathic disease 

which quickly progresses to lymph nodes and visceral organs (Hengge et al., 2002b). 

The more aggressive form of endemic KS commonly afflicts children and has a very high 

mortality rate (Wen et al., 2010). 

The final form of KS is post-transplanthatrogenic KS. Post-transplant KS occurs 

after the immune system has been suppressed for a long period of time by the therapy 



used to avoid rejection of a transplanted organ (Wen et al., 2010). Iatrogenic KS may 

become chronic or even progress quickly, but spontaneous remission will most likely 

occur after removal of immunosuppressive drugs (Hengge et al., 2002b). 

KSHV has also been strongly associated with two B cell diseases, PEL and 

multicentric Castleman's disease (MCD) (Lint et al., 2009). KSHV viral DNA was found 

in lymphomas, a cancer of the lymphatic system, within the body cavities of AIDS 

patients and were referred to as body cavity-based lymphomas (BCBL), also known as 

primary effusion lymphoma (PEL) (Ablashi et al., 2002; Wen et al., 2010). PEL operates 

as a classic tumor in that every cell carries KSHV DNA (Chen et al., 2007; Lint et al., 

2009). The lymphomas contain high copy numbers of viral DNA-anywhere from 50 to 

150 KSHV episomes per infected cell (Wen et al., 2010). The high copy number allows 

the virus to be identified easily by Southern blot analysis; this is unlike KS tissues which 

have few copies per cell and only PCR can be used for detection (Ablashi et al., 2002). 

PEL is very rare and is observed in the last stages of AIDS (Lint et al., 2009). It is 

identified by over growth of malignant B cells in the body cavity primarily in the pleura, 

pericardium and peritoneum (Chen et al., 2007; Lint et al., 2009; Wen et al., 2010). PEL 

is aggressive and progresses rapidly leading to hgh  mortality rates. Survival after 

diagnosis can typically be anywhere from two to five months (Ablashi et al., 2002; Chen 

et al., 2007; Wen et al., 2010). 

Castleman's disease is a rare lymphoproliferative disease typically depicted as a 

polyclonal, non-neoplastic disorder (Wen et al., 2010). The most common form is the 

hyaline vascular type described as a solitary localized mass usually in a lymph node, that 



can be surgwally removed (Ablashi et al., 2002; Lint et al., 2009). The second and more 

aggressive form, known as the plasma cell type, is associated with widespread 

lymphadenopathy (Hengge et al., 2002a; Wen et al., 2010). MCD is most commonly 

seen in AIDS patients and is characterized by germinal center expansion and vascular 

endothelial proliferation in the lymph nodes (Wen et al., 2010). KSHV is present in 

virtually all cases of AIDS-related MCD (Ablashi et al., 2002; Lint et al., 2009). It is 

common for MCD patients to develop KS and non-Hodgkin's lymphoma as well, but 

KSHV is almost always present even if KS does not develop (Ablashi et al., 2002). 

Many people are infected with KSHV but its seroprevalence in the population 

differs among the affected groups. In African countries, KSHV is observed in about 40 

to 60% of the general population reaching a high prevalence rate (Lint et al., 2009). The 

endemic areas have primary infection of KSHV occurring in childhood, and the number 

of infected individuals increases with age (Pelser et al., 2009). Transmission of the virus 

in endemic regions is primarily driven within the family, from parent to child and 

between family members. The most likely transmission method is salivary exchange 

(Ablashi et al., 2002; Lint et al., 2009). The Mediterranean populations are found to have 

anywhere from 10 to 25% seroprevalence of the virus, which is why classic KS is most 

often diagnosed in the regions surrounding the Mediterranean (Ablashi et al., 2002). The 

prevalence of KSHV in the rest of the world ranges from two to five percent, and is 

spread like a sexually transmitted disease despite the low viral load in semen of infected 

individuals (Ablashi et al., 2002; Lint et al., 2009). 



Herpesviridae 

The herpesvirus virion is made up of four major components: a nucleoprotein core 

which encapsulates a double-stranded linear DNA genome; an icosahedral capsid which 

surrounds the core; an unstructured dense protein layer, referred to as the tegument; and a 

lipid envelope containing different viral glycoproteins (Lint et al., 2009; Zhu et al., 

2005). Production of viral DNA and assembly of the capsid occur in the nucleus of the 

infected cell. During herpesvirus infection, virus-specific areas are created in the 

nucleus, designated as replication compartments. These compartments are where viral 

DNA replication, late gene expression and encapsidation of progeny genomes occur. 

These compartments cause the formation of basophilic nuclear inclusion bodies, which is 

a diagnostic feature of herpesvirus infection. Production of virion particles is usually 

accompanied by death of the infected cell (Lint et al., 2009). 

The herpesviridae family is made up of three subfamilies designated as a, P and y. 

The a-herpesviruses are grouped together based on their variable host range, short 

reproductive cycle, efficient destruction of infected cells, and ability to establish latent 

infections primarily in sensory ganglia (Knipe et al., 2001). The human herpes viruses 

(HHV) in the alpha subfamily include: HHVI, HHV2 and HHV3 (Knipe et al., 2001). 

The P-herpesviruses are characterized by their long reproductive cycle, slow progression 

of infection in culture, and possible enlargement of infected cells (Knipe et al., 2001). 

The human herpes viruses in the beta subfamily include: HHVS, HHV6 and HHV7 

(Knipe et al., 2001). The y-herpesviruses are grouped together based on their capability 

to replicate in epithelial cells, establish either latency or lytic infections in lymphocytes, 



and cause cancer (Knipe et al., 2001; Lint et al., 2009). There are two genera in the y- 

herpesvirus subfamily: the lyrnphocryptovirus genus, which includes Epstein-Barr virus 

(EBV), and the rhadinovirus genus, which includes: HHV4, KSHV and murine herpes 

virus 68 (MHV-68) (Knipe et al., 2001; Lint et al., 2009). The y-herpesviruses are 

known to establish viral infection and evade detection by actively suppressing apoptosis 

and escaping immune detection (Wen et al., 2010). They can alter cell cycle progression, 

apoptosis and immune surveillance allowing the virus to increase its odds of survival 

(Wen et al., 2010). 

KSHV Life Cycle 

The KSHV genome is approximately 165 kb long, contains more than 81 open 

reading frames (ORF), and can encode up to 90 viral proteins (Russo et al., 1996). The 

linear double stranded DNA viral genome has a central region with a low GC make up 

known as the long unique region (LUR); this region is flanked on both ends by terminal 

repeats (TR) which are highly GC rich (Hengge et al., 2002a; Russo et al., 1996; Wen et 

al., 2010). Even though numerous ORFs of KSHV are conserved, there are KSHV 

specific ORFs not seen in other herpesviruses. The KSHV specific ORFs are identified 

as K1 to K15 (Russo et al., 1996; Wen et al., 2010). Attachment to a host cell is made 

possible by glycoproteins (gB, ORF4, gWgL, gM/gN and gpK8.1A) binding with 

receptors like heparan sulfate (HS), DC-SIGN (dendritic cell-specific intercellular 

adhesion molecule 3 (ICAM-3)-grabbing non-integrin), integrins and other unknown 

ligands found on the surface of the cell (Akula et al., 2001; Rappociolo et al., 2006). 

Binding to receptors leads to the start of signaling pathways that will either cause fusion 



of the virion envelope to the cell membrane or endocytosis of the virion (Chandran et al., 

2010; Greene et al., 2009). 

The pathway of entry is dependent on the cell type, for example, clathrin- 

mediated endocytosis has been observed in endothelial, epithelial and fibroblast cells 

(Akula et al., 2003; Chandran et al., 2010; Greene et al., 2009). Attachment and entry is 

then followed by transportation of the endocytotic vesicle, containing the virion, to the 

nucleus (Raghu et al., 2009). Similar to other herpesviruses, DNA replication occurs via 

the rolling circle mechanism in the replication compartments in the nucleus (Knipe et al., 

2001). Like other herpesviruses, KSHV exhibits both latent and lytic phases in infected 

cells (Sharma-Walia et al., 2006). 

After entry into the cell, polymerized microtubules deliver the viral DNA to the 

nucleus (Naranatt et al., 2005). At this point a latent infection is established and the viral 

genome is replicated as an episome (Greene et al., 2007; Hengge et al., 2002a; Lint et al., 

2009). There are very few viral genes that are expressed during latency. Some of the 

latent viral genes include the latent nuclear antigen (LANA/ORF73), viral cyclin (v- 

cyclin/ORF72), viral Fas-associated death domain (FADD) interleukin-lL-converting 

enzyme (FLICE) inhibitory protein (v-FLIPlK13) and kaposin (K12); all are located 

adjacent to one another in the genome (Chandran et al., 2010; Jenner et al., 2002; 

Pyakurel et al., 2007). 

During latent infection the latently expressed genes prevent apoptosis of the cell, 

ensure the viral genome is dispersed to progeny cells, and drive the cell cycle forward 

(Jenner et al., 2002; Lint et al., 2009; Pyakurel et al., 2007). For example, LANA 



competes with E2F (a transcription factor) for binding of retinoblastoma protein (Rb) 

(Pyakurel et al., 2007) which leads to further progression of the cell cycle. V-cyclin 

promotes progression of the cell cycle when it binds with cyclin dependent kinase 6 

which, will in turn, phosphorylate Rb (Verschuren et al., 2004). Phosphorylated Rb will 

release bound E2F (Verschuren et al., 2004). Free E2F activates the transcription of S 

phase genes moving the cell cycle forward (Pyakurel et al., 2007; Verschuren et al., 

2004). 

In latent cells, no infectious virus particles are being produced, but when induced 

into reactivation, KSHV enters the lytic phase (Wen et al., 2010; Zhu et al., 2005). 

Triggering a cell to go from latency to lytic infection is mediated by the replication and 

transcription activator (Rta) protein, which is a viral transcriptional activator able to 

induce lytic gene expression alone (Chen et al., 2009; Greene et al., 2007; Lint et al., 

2009; Nakamura et al., 2003). During latency Rta expression is repressed (Greene et al., 

2007). It has been shown that deletion of Rta inhibits both spontaneous and chemical 

induction of the lytic cycle (Lint et al., 2009). When the cell is triggered to enter the lytic 

cycle, expression of the viral genes is initiated in a sequential manner beginning with the 

immediate early (IE), early (E) and late (L) genes (Lint et al., 2009). 

The IE genes regulate the subsequent transcriptional cascade; Rta, the "switch" 

protein, is required to initiate the lytic replication cycle (Greene et al., 2007; Wen et al., 

2010). The first genes to be expressed after induction encode regulators of gene 

expression such as ORF50, K8 and OW45 (Jenner et al., 2002). The IE gene K8 appears 

to balance Rta's transactivation activity (Rossetto et al., 2007) and OW45 aids in the 



suppression of interferon induction (Zhu et al., 2002). These IE genes are followed by E 

genes which assist in viral DNA replication (Lu et al., 2004). L genes take part in the 

construction and maturation of virions (Jenner et al., 2002; Lu et al., 2004). 

Glycoproteins are late genes; they are membrane proteins found on the lipid envelope of 

virions (Knipe et al., 2001). 

Glycoproteins 

Glycoproteins play a major role in cell to cell interactions including attachment 

and entry into host cells (Knipe et al., 2001). Fusion of the virion envelope with host cell 

membranes is primarily mediated by viral glycoproteins; viral glycoproteins can also aid 

in virion egression (Subramanian et al., 2010). Glycoproteins are created on membrane 

bound ribosomes, translocated to the endoplasmic reticulum (ER) and are typically 

transferred to the plasma membrane via the trans-Golgi network (TGN) (Veit et al., 

1996). KSHV encodes many glycoproteins which are conserved in the herpesviridae 

including: gB, gH, gL, gM and gN (Chandran et al., 2010; Zhu et al., 2005). KSHV also 

encodes unique glycoproteins which include: K1, ORF4, K8.1A, K8.1B, K14 and K15 

(Chandran et al., 2010; Zhu et al., 2005). K8.1 gene encodes two glycoproteins produced 

from spliced transcripts, K8.1A and K8.1B. K8.1A is the most abundant of the two 

(Chandran et al., 2010; Chandran et al., 1998; Zhu et al., 2005). Birkmann et al. (2001) 

examined the binding of K8.l to mammalian cells using soluble K8.1 protein. It was 

found that both K8.1 protein derivatives are capable of binding to cell surface heparin 

sulfate (HS) (Ablashi et al., 2002; Birkmann et al., 2001; Zhu et al., 2005). Furthermore, 

soluble HS blocked infection of endothelial cells by KSHV (Birkmann et al., 2001). 



Viral glycoproteins are very important in the spread and attachment of the virus particle; 

therefore, it is imperative that we examine all known and any possible KSHV 

glycoproteins. 

OW27 and ORF58 

There are two other possible glycoproteins or membrane associated proteins in 

KSHV, ORF27 and OW58 (Chandran et al., 1998; Russo et al., 1996), but their 

functions have not yet been determined. KSHV OW27 is homologous to EBV BDLF2 

(43.3 % similarity) and MHV-68 ORF27 (42% similarity) (May et al., 2005a; Russo et 

al., 1996). BDLF2 was thought to be a virion tegument protein poorly conserved among 

y-herpesviruses (Johannsen et al., 2004; Tarbouriech et al., 2006), but was actually found 

to be the eleventh glycoprotein of EBV (Gore et al., 2009). BDLF2 encodes a 

transmembrane domain protein with N-linked glycosylation sites which classifies BDLF2 

as a type I1 envelope glycoprotein (Gore et al., 2009). MHV-68 ORF27 was also found 

to be a glycoprotein, analogous to BDLF2, that plays a role in cell to cell viral spread, but 

also restricts host antibody access to the sensitive extracellular loop of the MHV-68 

OW58 glycoprotein (May et al., 2005a). Zhu et al. (2005) purified KSHV virions and 

determined all proteins present within the virion. The KSHV OW27 protein was found 

in the purified virions but localization within the virion was not determined (Zhu et al., 

2005). Rozen et al. (2008) observed virion protein interactions and found KSHV ORF27 

interacted with two envelope glycoproteins (ORF47 and ORF53) and ORF45, a tegument 

protein. After examination of KSHV ORF27 homologues and its association with 

purified virions, I hypothesize that KSHV OW27 is a possible glywprotein. 



KSHV ORF58 is homologous to EBV BMRF2 (50.6 % similarity) (Russo et al., 

1996) and MHV-68 OW58 (41 % similarity) (May et al., 2005a). BMRF2, a highly 

hydrophobic multi-spanning transmembrane protein, has been observed to be crucial to 

EBV infection of epithelial cells (Tarbouriech et al., 2006; Xiao et al., 2007). An 

arginine-glycine-aspartic acid (RGD) motif was discovered in the main extracellular 

loop of BMRF2 (Xiao et al., 2009). RGD motifs interact with many extracellular matrix 

proteins that interact with host cell surface integrins (Akula et al., 2002). The 

interactions with integrins can activate many integrin associated pathways which could 

lead to virion attachment and entry or cell to cell spread (Xiao et al., 2007). BMRF2 was 

not crucial to the egress of infectious EBV particles, supporting the idea that the protein 

may actually help in cell to cell spread (Loesing et al., 2009; Xiao et al., 2008). EBV 

BMRF2 protein has been observed in mature virions (Xiao et al., 2007). MHV-68 

OW58 also encodes a type I1 multi-membrane spanning protein which can bind to cells 

via an extracellular loop (EC4), similar to the RGD containing loop found in BMRF2 

(May et al., 2005a; Xiao et al., 2009). KSHV ORF58 encodes a highly hydrophobic 

protein which has many potential transmembrane regions (Chan et al., 1998). KSHV 

ORF58 was predicted to be a type IIIa or 11% plasma membrane associated protein (Chan 

et al., 1998). The similarities between the ORF58 homologues lead us to speculate that 

KSHV ORF58 protein may also be a glycoprotein. 

Identifying the expression patterns of OW27 and 58 may help in understanding 

their role in the virus life cycle. Gene expression patterns can be determined using many 

different techniques. The various methods will help to determine the true expression 



pattern of a gene. Nakamura et al. (2003) developed a multiprobe RNase protection 

assay to examine all KSHV genes expression patterns after induction. Yoo et al. (2005) 

established an infection in endothelial cells using a recombinant KSHV expression 

vector; and whole genome RT-qPCR was then used to evaluate expression patterns of 

KSHV transcripts after infection. Anti-viral drugs can also be used to study expression 

patterns. Lu et al. (2004) used cidofovir (CDV), an inhibitor of viral DNA replication, to 

examine KSHV gene expression. CDV will cause inhibition of viral DNA synthesis and 

replication by being incorporated into the replicating DNA which terminates the strand 

(De Clercq et al., 2003). CDV allows for the detection of late viral transcripts, which 

would rely on viral DNA replication, from other transcripts (De Clercq et al., 2003). 

Nakamura et al. (2003) found KSHV OW27 to be late, meaning expression rate 

surpassed two-fold amplification after 16 hours and continued to increase. OW27 would 

be expected to be expressed late in the replication cycle if it were a glycoprotein. Yoo et 

al. (2005) also observed a late expression pattern for KSHV ORF27. Lu et al. (2004) 

found OW27 was sensitive to CDV. Many of the genes sensitive to CDV were virion 

structural proteins (Lu et al., 2004). Ebrahimi et al. (2003) identified late transcripts with 

phosphonoacetic acid treatment (another viral DNA polymerase inhibitor) prior to 

infection with MHV-68. Total RNA was isolated and analyzed by DNA microarrays. 

MHV-68 OW27 was identified as a late expressing transcript (Ebrahimi et al., 2003). 

Similar to its homologues, EBV BDLF2 was also observed having a late expression 

pattern (Tarbouriech et al., 2006). 



Nakamura et al. (2003) found KSHV ORF58 had an immediate-early expression 

pattern, corresponding to a greater than or equal to two-fold increase prior to 12 hours 

with expression reaching its apex at 24 hours. Interestingly, ORF58 mRNA expression 

was not observed late in the cycle as would have been expected. Contrary to Nakamura 

et al. (2003) findings for KSHV ORF58, Yoo et al. (2005) determined, with the use of 

the KSHV recombinant expression vector, KSHV ORF58 had a late expression pattern. 

Lu et al. (2004) found KSHV ORF58 was insensitive to CDV which would mean ORF58 

was not a late expressing transcript. On the other hand, Lu et al. (2004) observed only 

-25% of genes with glycoprotein homology were CDV sensitive. The remaining 

glycoproteins were CDV insensitive with expression occurring early in the lytic cycle (Lu 

et al., 2004). This early expression may allow time for post-translational modification or 

targeting of the protein to other locations within the cell (Lu et al., 2004). EBV BMRF2 

mRNA expression occurred during the lytic cycle (Loesing et al., 2009; Xiao et al., 

2007). Ebrahimi et al. (2003) identified MHV-68 OW58 as a late expressing transcript. 

Sander et al. (2007) identified the localization patterns of KSHV ORF27 and 

ORF58 using expression plasmids. KSHV OW58 was subcellularly localized in the 

TGN (Sander et al., 2007). KSHV OW27 was observed to throughout the cytoplasm 

heterogeneously (Sander et al., 2007). Localization of the EBV homologues depended 

on the presence of other proteins (Gore et al., 2009). When expressed alone BDLF2 did 

not travel from the ER to the TGN (Gore et al., 2009; Loesing et al., 2009). Yet, when it 

was co-expressed with BMRF2, BDLF2 co-localized and translocated to the cell 

membrane (Gore et al., 2009). Therefore, BDLF2 translocation and correct processing is 



dependent on BMRF2 (Gore et al., 2009; Loesing et al., 2009). Studies show that 

BDLF2 and BMRF2 form a stable complex (Gore et al., 2009; Xiao et al., 2009). 

Correct processing of MHV-68 OW27 and its transportation from the ER to the cell 

plasma membrane also only occured when co-expressed with MHV-68 ORF58 (May et 

al., 2005a), similar to the EBV BDLF2 protein. In cells expressing only MHV-68 

ORF27, the protein was localized strictly within the cell at the ER (May et al., 2005a). 

MHV-68 OW27 and ORF58 also form a protein complex that aids in cell to cell spread 

of the virus (May et al., 2005a). 

KSHV ORF27 and ORF58 sequence homology to EBV and MHV-68 suggests 

their functions may also be similar. In order to investigate this hypothesis, KSHV 

OW27 and ORF58 were cloned. OW27 fusion protein was expressed in mammalian 

cells. After expression was verified via western blot analysis, ORF27 fusion protein was 

visualized using confocal microscopy to illustrate localization of OW27 in the cytoplasm 

of the cell. 



Materials and Methods 

Sequence Alignment 

KSHV ORF27, EBV BDLF2 and MHV68 OW27 were aligned using ClustalW2, 

(http://\nnv.ebi.ac.ukiclustalw2/), using the following accession numbers: KSHV OW27 

- AAC57108.1, EBV BDLF2 - CAD53445.1, MHV68 OW27 - AAB66398.1. KSHV 

ORF58, EBV-BMRF2 and MHV68 OW58 were also aligned using the ClustalW2 

program. The following accession numbers were used in the OW58 alignment: KSHV 

OW58 - AAC57143.1, EBV-BMRF2 - CAD53408.1, MHV68 OW58 - AAB66448.1. 

The protein sequences of the OW27 homologues were also analyzed for possible N- 

linked glycosylation sites using NetNGlyc 1.0 Server, a prediction program (Blom et al., 

2004). http:/luw.cbs.dtu.dWservices~etNGlyc/ 

Cloning of ORF 58 and 27 

KSHV OW58 was cloned into p3XFLAG-CMV-14 (Sigma-Aldrich) and 

p3XFLAG-CMV-26 (Sigma-Aldrich). KSHV OW27 was cloned into phCMV2 

(Genlantis). Gene inserts were amplified using PCR. Body-cavity-based lymphoma cell 

line (BCBL-1) genomic DNA was used as the template. The thennocycler conditions for 

denaturation, annealing and extension are listed on Table 1,30 cycles were used to 

amplify the genes. The polymerase chain reaction (PCR) consisted of the following: 50 

n g l ~ 1  BCBL-1 template DNA, 50 pmol of primer mix, 10 mM dNTP mix, 1X PCR 

Buffer (USB) and 1 p1 FideliTaq DNA Polymerase (USB) in a 50 p1 reaction with RNase 

free water, some reactions had an additional 1 mM MgC12. PCR products were then 



electrophoresed on a 1.0% (wlv) agarose gel in 1X Tris-acetate-EDTA buffer (TAE; 400 

mM Tris-acetate, 10 mM EDTA)-containing 0.5 pgl ml ethidium bromide. The PCR 

products were then gel purified using the QIAquick Gel Extraction Kit (Qiagen) 

according to manufacturer's instructions. 

All purified PCR products and vector plasmids were digested with Bgl I1 

(Promega) and Eco RI (Promega) restriction enzymes. After digestion, PCR products 

and vectors were purified using the Charge Switch Kit (Invitrogen) before ligation. The 

ligation reaction consisted of T4 DNA ligase (Promega), 1X ligase buffer (Promega), 

purified PCR and plasmid products (double digested) in a total volume of 20 p1. Control 

ligations, which did not include the gene of interest, were also prepared. The ligation 

reactions were then incubated overnight at 16OC. The OW58127 constructs were then 

transformed into Escherichia coli (E. coli) DH5a cells (described in detail below). 

Colonies from the transformation were grown in Luria broth (LB) with ampicillin or 

kanamycin (100 pgl pl), depending on the plasmid used, overnight at 37OC. The 

plasmid-insert construct DNA was then isolated from the overnight cell culture using 

Quantum Prep Plasmid mini-prep kit (Bio Rad). The isolated DNA was double digested 

with the appropriate restriction enzymes and the reaction was electrophoresed in a 1% 

agarose gel to check for the presence of the KSHV gene inserts. To verify the inserts 

were correctly cloned the presumptive positive clones were sent to Genewiz 

(htt~://www.renewiz.com/) for sequencing. 



Insert 

OW58 

(C and N terminally tagged) 

3' primer 5' primer 

OW58 

(N terminally tagged) 

! OW27 atgaattcaccaeteacacaccttta aaagatctQcgtcatcteatattctg 
47'C - 30sec; 72°C - lmin ' I  

PCR Conditions 

aaagatctwxaacaactttatttattaccg 

OW58 

(C terminally tagged) 

1 1  
Table 1: List of OW58 and OW27 primers and their respective PCR conditions. V i s  specific sequence 

aaagatctttaeccaacaactttatth 

is underlined and the sequence of the restriction enzyme sequence is in red. 

aagaattcttpccecctwacaeteag 

aaagatctggccaacaactttatttattaccg 

Transformation 

Frozen E. coli DH5a competent cells were thawed on ice, gently mixed and 50 p1 

94°C - 2min; 94'C - 30sec; 

55'C - 30sec; 72°C - lmin 

aagaattcttecceccteeacaeteag 

aliquots were transferred into labeled tubes. The ligation reactions, five pl each, were 

94°C - 2min; 94'C - 30sec; 

53°C - 45sec; 68'C - lmin 

aagaattcaccatetgcce.ccte~acaeteae; 

then added to the dispensed cells and gently mixed. The ligationlcell mixture was 

94°C - 2min; 94°C - 30sec; 

6I0C -45sec; 6S°C - lmin 

incubated on ice for 30 minutes. The cells were then heat shocked at 42OC for 60 seconds 

and then placed on ice for two minutes. After resting on ice, 450 p1 of LB was added to 

the transfected cells. The cells were then transferred to a 37OC water bath for one hour. 

The appropriate volume (100-200 p1) of transformed cells were spread on LB agar plates 

containing either ampicillin or kanamycin (100 pg/ p1) and incubated at 37OC overnight. 

Transfection 

Vero, African green monkey kidney, cells were plated at a concentration of 

2 . 0 ~ 1 0 ~  cells/well and incubated for 24 hours at 37"C15% C02 in two ml of Dulbecco's 



Modified Eagle Medium (DMEM) (Mediatech Inc) supplemented with 1% penicillin- 

streptomycin (Mediatech Inc) and 10% fetal bovine serum (PAA laboratories). Transient 

transfection was carried out using GeneJuice (Novagen) according to manufacturer's 

instructions. A mixture of Genejuice (three p1) and serum free DMEM (100 p1) was 

created for each variable. The tubes were then incubated at room temperature for five 

minutes. Afterwards, one pg of extracted clone DNA was added to the appropriately 

labeled DMEMiGenejuice mixture and incubated 15-20 minutes at room temperature. 

After incubation, DMEM/Genejuice/clone DNA mixtures were added to Vero cells and 

cells were grown for 48 hours at 37OC/5% COz. 

Protein Extraction 

Forty eight hours post-transfection, cells were rinsed with phosphate buffer saline 

(PBS). Lysis buffer [SO mM Tris-HC1 (pH 7.5), 120 mM NaCl,5 mM EDTA, 0.5% NP- 

40,50 mM NaF, 0.2 mM Na3V04, 1 mM DTT, 1 mM PMSF or 1 Complete protease 

cocktail tablet (Roche) with 1 mM DTT] was then added to the adherent cells in the well. 

After addition of the lysis buffer, cells were scraped with a plastic scraper and placed into 

a microcentrifuge tube on ice. The scraped cells were then incubated on ice for ten 

minutes with periodic vortexing. Cells were then centrifuged (12,000 rpm) at 4OC for ten 

minutes. The supernatant was transferred to a new tube and the pellet was discarded. 

The extracted protein samples were stored at -80°C. 

Extracted protein concentrations were calculated using a spectrophotometer. A 

standard curve was created using bovine gamma globulin (Bio-Rad) at increasing 

amounts (one, three, five, and ten micrograms) in one ml of protein determination reagent 



Bradford dye (USB). The optical density for protein samples were analyzed at 595 nm. 

An aliquot of the extracted protein samples were added to one ml of Bradford dye and 

optical density was recorded at 595 nm. The gamma globulin standard curve was then 

used to calculate the protein concentrations of the extracted protein samples. 

SDS PAGE and Western Blot 

A 10% SDS PAGE gel was used to separate the protein extracts. The SDS PAGE 

resolving gel consisted of the following: 375 mM Tris (pH 8 . Q  10% acrylamide, 0.1% 

SDS, 0.1% ammonium persulfate, 0.04% TEMED. The stacking gel was made up of: 5% 

acrylamide, 125 mM Tris (pH 6 4 ,  0.1% SDS, 0.1 % ammonium persulfate, 0.1% 

TEMED. Extracted proteins were prepared with SDS loading buffer (125 mM Tris pH 

6.8,4% SDS, 20% Glycerol, 10% P-Mercaptoethanol, 200 mM DTT and 0.002% 

bromophenol blue) and boiled at 100°C for five minutes. Samples then were loaded and 

run on SDS PAGE gel at 100-150 volts. The separated proteins were then transferred 

onto a nylon Immobilon P membrane (Millipore) using a cathode core filled with transfer 

buffer (20% methanol, 0.1% SDS, 1X transfer buffer [lo0 mM Glycine, 12.5 mM Tris- 

HCI pH 8.31 and deionized water) overnight at 0.08 amps. 

Afier the overnight transfer, the membrane was blocked with non-animal protein- 

blocker (NAP) (GBiosciences) diluted 1:2 in TBST (25 mM Tris-HC1 (pH KO), 125 mM 

NaC1,0.1% Tween-20). The membrane was blocked, one to four hours, at room 

temperature with rocking. Primary antibodies were diluted 1: 1000 in 1:4 NAPITBST (10 

ml total volume) and incubated, one to four hours, at room temperature with rocking. The 

primary antibody used for phCMV2-ORF27 was HA.11 monoclonal antibody raised in 



mouse (Covance) and the primary antibody for p3XFLAG-ORF58 was ANTI-FLAG M2 

monoclonal antibody (Sigma-Aldrich) developed in either mouse or rabbit. Afterwards, 

the membrane was then washed four times with TBST, ten minutes each wash. 

After the TBST washes the secondary antibody, anti-mouse or anti-rabbit IgG 

horseradish peroxidase (HRP)-linked antibody (Cell-Signaling), was diluted 1:1000 in 

TBST (ten ml total volume) and added to the membrane. The membrane was incubated 

with the secondary antibody for one to four hours at room temperature with rocking. The 

membrane was then washed with TBST as described previously. The ECL Plus Western 

Blotting Detection Reagent (GE Healthcare) was used, according to manufacturer's 

instructions, to detect any immobilized HRP-linked antibodies on the membrane. Finally, 

the membrane was scanned on the STORM Scanner 860 (Molecular Dynamics) 

phosphoimager to visualize the protein bands. The background and contrast levels of the 

scanned images were adjusted with ImageQuant 5.2. 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Reverse transcription PCR was used to observe if OW58 DNA was being 

transcribed into RNA in cells after transfection. Vero cells were transfected with OW58 

constructs as detailed above. Forty eight hours post-transfection, total RNA was 

extracted using RNA spin mini RNA isolation kit (GE Healthcare), according to 

manufacturer's instructions. RNA concentrations were quantified using a 

spectrophometer at 260 nrn. The extracted RNA samples were diluted 1 :I00 in sterile 

water and then transferred to quartz cuvettes. The reading observed at 260 nm multiplied 



by the dilution factor and 40 pg/ ml (equivalent to one A260 unit) will give the 

approximate concentration of RNA. 

RNA samples, two pg total, were then treated with RQ1 RNase-Free DNase 

(Promega) for 30 minutes at 37°C. A one p1 aliquot of DNase stop solution (Promega) 

was added to the RNA samples to terminate the DNase reaction; which was followed by 

65OC incubation for ten minutes. The RNA samples (1 pg, 9.1 p1 each) were incubated 

for ten minutes at 70°C, followed by ten minutes at 4'C. RT master mix was prepared 

with the RT-PCR kit (Promega) as follows (20 p1 total volume): 5 mM MgCl2, 1X RT 

buffer, 1 mM dNTP mix, 0.5 p1 recombinant RNasin ribonuclease inhibitor, 0.6 pl AMV 

reverse transcriptase and 0.025 pg/ pl Oligo(dT)l5 primer. A "no RT" master mix was 

prepared without RT, RNasin and O l i g ~ ( d T ) ~ ~  primer. Samples prepared without RT, 

RNAsin, and Oligo(dT)ls would identify any possible DNA contamination in the RNA 

samples. The RT and "no RT" master mixes were then added to the RNA samples. The 

reaction was then carried out at 4 2 T  - 30 minutes, 95OC - five minutes, and 10°C over 

night. 

PCR was then carried out with new OW58 primers that were used to amplify a 

small portion of the sequence. The primers created were: 3'cagcatgctcacgaggaata, 5' 

tcctgattggcctggataag. GAPDH primers were used as a positive control for RT-PCR. The 

PCR consisted of the following: 10 p1 RT reaction, 50 pmol primer mix, 25 p1 Master 

mix (Promega) and nuclease-free water. The PCR conditions were as follows: 94'C-30 

seconds, 55T-30 seconds, 72°C-30 seconds for 30 cycles. RT-PCR reactions were then 

run and visualized on a 1% agarose gel. 



Immunofluorescence 

Coverslips and slides were acid washed in 1 M HC1 solution heated at 50'-60°C 

for four hours, cooled to room temperature and then rinsed in 100% ethanol. Treated 

coverslips were placed on the bottom of wells prior to adding Vero cells. To each well, 

2 . 0 ~ 1 0 ~  cells were then added and cells were grown for 24 hours at 37'C/5% C02. The 

transfections were performed as outlined above. Cells were rinsed in PBS, 48 hours post 

transfection, and fixed to the coverslips with 3.7% paraformaldehyde solution at 

37"C/5% C02 for 30 minutes. 

Fixed cells were then covered with blocking buffer (1% bovine serum albumin in 

PBS) for 30 minutes at 37'C/5% C02. Blocking buffer was then removed and the 

primary HA-Tag rabbit monoclonal antibody (Cell Signaling) was added to the 

coverslips. Coverslips were incubated one hour at room temperature and subsequently 

washed three times in PBS. Transfected cells were then incubated with secondary 

antibody conjugated to a fluorochrome Alexa floura 488 rabbit IgG (Invitrogen) for 

ORF27. Cells were incubated one hour at room temperature then washed three times 

with PBS. DAPI stain solution was then added to cells for five minutes at room 

temperature. Each coverslip was then inverted onto a slide containing ten p1 of Cytoseal 

mounting media (Richard-Allan Scientific). Any excess media was removed and the 

edges of each coverslip were sealed with transparent nail polish. Proteins of interest were 

visualized using the Olympus Fluoview FV1000 confocal microscope. The argon laser 

was used to excite Alexa 488 fluorophore and the diode blue 405 was used to excite the 

DAPI stain. 



Results 

ORF27 and ORF58 sequence comparisons 

In order to determine ORF27 and ORF58 sequence similarities to EBV and 

MHV-68, all sequences were aligned using ClustalW2, a sequence alignment program for 

DNA or proteins (Chenna et al., 2003). EBV BDLF2 and MHV-68 ORF27 were 

predicted to encode type I1 transmembrane glycoproteins with N-linked glycosylation 

sites (Gore et al., 2009; May et al., 2005b). Figure 1A illustrates the sequence alignment 

between KSHV OW27 and its homologues. Identification of the N-linked glycosylation 

sites were accomplished using NetNGlyc 1.0 Server, a prediction program (Blom et al., 

2004). The glycosylation program showed multiple N-linked glycosylation sites in the 

extracellular regions of all ORF27 homologues. There was also a marked difference 

observed in the lengths of OW27 homologues cytoplasmic tails. The KSHV ORF27 

cytoplasmic tail was 82 amino acids shorter than EBV BDLF2 and 32 amino acids longer 

than MHV-68 ORF27. 

The ORF58 alignment was enhanced using information provided by May et al. 

(2005). EBV BMRF2, MHV-68 ORF58 and KSHV OW58 are predicted to contain 11 

transmembrane (TM) regions (May et al., 2005a). We see in Figure lB, the TM regions 

had high numbers of identical, conserved and semi-conserved amino acids. As per May 

et al. (2005), KSHV ORF58 protein had 11 TM domains, equivalent to both MHV-68 

ORF58 and BMRF2. May et al. (2005) used EC4 in EBV BMRF2, the largest 

hydrophilic loop, as a point of reference to determine the other hydrophilic domains. The 



RGD motif, within the EC4 region, is important in virion attachment and cell to cell viral 

spread (Xiao et al., 2007). The RGD motif was not observed in either MVH-68 (ORF58) 

or KSHV (ORFS8) (Figure IB). 

Cloning of ORF27 and ORF58 

To study ORF27 and ORFS8, the genes were cloned into mammalian expression 

plasmids. The genes were amplified using PCR and cloned into phCMV-2 and 

p3XFLAG-14, respectively. PCR was carried out using gene specific primers and 

BCBL-1 genomic DNA. Figures 2A and 2B confirm the specificity of the primers to 

amplify the genes of interest at the expected sizes of 874 bp for OW27 and 1094 bp for 

ORFS8. The bands observed were consistent with the nucleotide sequence lengths of 

OW27 and ORFS8 as described by Russo et al. (1996). Afier PCR and gel purification, 

ORF27,ORF58, and the plasmids were digested sequentially with EcoR I and Bgl 11. 

Following double digestion, the genes and plasmids were purified and ligation was 

carried out. The ligated OW27 and ORF58 plasmids were then transformed into E. coli 

strain DHSa. DNA was isolated from colonies that were picked and grown overnight. 

The isolated DNA was double digested with EcoR I and Bgl 11. In Figures 2C and 2D we 

observed positive clones for both phCMV-2-OW27 (five total) and p3XFLAG-14- 

ORFS8 (ten total). 

Selected clones were sent to Genewiz for sequencing. ORF27-C1 and C10 

sequences were compared to the KSHV nucleotide sequence. KSHV ORF27-C1 had 

98% identity to the published KSHV ORF27 sequence (accession number AACS7108.1) 

and KSHV ORF27-C10 had 96% identity (data not shown). Due to the higher percent 



Figure 1. Sequence analysis of KSHV O W 2 7  and ORF58. Sequence analysis of KSHV OW27 and 
OW58 was performed using ClustalWZ. A. Alignment results of MHV-68 (OW27), KSHV (OW27), and 
EBV pDLF2). Identification of N-linked glycan attachment sites, highlighted in grey, were done using 
NetNGlyc 1.0 Server program. B. Alignment results of MHV-68 (ORF58), EBV (BMRFZ), and KSHV 
(ORF58). Transmembrane regions were underlined for KSHV OW58 and its homologues. Extracellular 
domain 4 (EC4) is highlighted in yellow and the RGD motif, within EC4, is highlighted in green. 



Figure 2: Cloning of phCMV2-OW27 and p3XFLAG14-ORF58. A. PCR amplification of OW27 
using gene specific primers and BCBL-1 genomic DNA. B. PCR amplification product of ORF58. C. 
pbCMV-2-OW27 clones double digested with EcoR I and Bgl 11. lkb DNA ladder (lane l), phCMV-2 
control (lane 2), double digested clones 1-10 (lanes 3-12). D. p3XFLAG-14-OW58 clones double digested 
with EcoR I and Bgl 11. lkb DNA ladder (lane l), p3XFLAG-14 control (lane 2), double digested clones 1- 
I0 (lanes 3-12), OW58 insert control (lane 13). 



identity, ORF27-C1 was used for subsequent analyses. The sequence results for KSHV 

ORF58-C3 and C8 revealed 96% identity to the published KSHV OW58 sequence 

(accession number AAC57143.1) (data not shown). 

Protein expression of K S W  OW27 and ORF58 clones 

To determine if protein expression would be observed, a western blot analysis 

was performed on OW27 and ORF58 clones expressed in mammalian cells. The ORF27 

insert was N-terminally tagged with an in-frame HA fusion protein. ORF58 was tagged 

with an in-frame 3XFLAG fusion protein. A total of three ORF58 constructs were 

created; they included an N-terminal3XFLag tag, a 3XFLAG N- and Myc C-terminal tag 

and finally a 3XFLAG C-terminal tag insert. The phCMV2-ORF27 and p3XFLAG- 

OW58 constructs were transfected into Vero cells, total protein was extracted, separated 

on a 10% SDS-PAGE gel, and western blot analysis was carried out. The expected size 

of the ORF27 fusion protein was 34.5kDa. In Figure 3A, a band of approximately 34.5 

kDa was observed in lanes 4 and 5 indicating that ORF27 was successfully expressed 

from the phCMV2 plasmid. Some non-specific bands were also observed but the ORF27 

bands were intense in comparison. A 4lkDa band, which would correspond to the 

OW58 fusion protein, was not observed (Figure 3B) (C-terminal tag). An intense band 

for the positive control FLAG-V-cyclin-C7 was observed in lane 4 verifying the 

transfection and western blot worked properly. Similar results were observed for all 

other ORF58 constructs (data not shown). The OW58 fusion protein was never observed 

in any western blot analyses. Another mammalian cell line, 293T, was also used; 

however, expression of the ORF58 fusion protein was not observed (data not shown) 



phCMV-2-OW27 clones p3XFLAG-14-OW58 clones 

Figure 3. Protein expression of phCMV-2-ORFZ7 and p3XFLAG-14-ORF58. phCMV2-OW27 and 
p3XFLAG-OW58 clones were transfected into Vero cells, total protein was extracted, run on 10% SDS- 
PAGE gel and then analyzed via western blot. A. OW27 protein expression. Full range rainbow GE 
Healthcare molecular weight marker (lane I), negative control mock transfected Vero cells (lane Z), 
pbCMV-2-ORF27-C1 (lane 3), phCMV-2-ORF27-C10 (lane 4). The expected size of the HA-OW27 
fusion protein was 34.5 kDa. B. OW58 protein expression. Full range rainbow GE Healthcare molecular 
weight marker (lane I), p3XFlag-14-ORF58-C3 C-tern tag (lane 2), p3XFlag-14-OW58-Cg C-term tag 
(lane 3), positive control vCyclin clone 7 (lane 4), negative control mock transfected Vero cells (lane 5). 
The expected size of the 3XFlag-ORF58 fusion protein was 41 kDa. 



Detection of ORF58 mRNA by RT-PCR 

To examine possible reasons why the OW58 hsion protein was not expressed, 

total RNA of p3X-FLAG-ORF58 transfected cells were analyzed for the presence of 

ORF58 mRNA. Vero cells were transfected with ORF58 clones including N-terminal 

tag, C-and N-terminal tag, and C-terminal tag clones. Total RNA was isolated from the 

cells. Reverse transcriptase converted mRNA to cDNA. PCR was then carried out with 

gene specific primers to amplify the targeted DNA. As a control, the ORF58 samples 

were also run without RT (Figure 4A, lanes 8-13) which would identify DNA 

contamination in the isolated RNA samples. The OW58 samples where mRNA was 

observed were the C-terminal tag (lanes 2-3) and the C- and N-terminal tag (lane 6) 

clones. In Figure 4B, GAPDH positive control bands were observed confirming that 

mRNA was properly reverse transcribed and amplified in all samples. The presence of 

OW58 mRNA would indicate the DNA was being transcribed in the cell. 



Figure 4. Detection of OW58 mRNA with RT-PCR. P3XFLAG-OW58 constructs were transfected 
into Vero cells, total RNA was collected and reverse transcription-PCR was performed. OW58 RT-PCR 
product is 206 bp in length A. OW58 RTPCR product m on agarose gel. lOObp DNA ladder (lane I), 
p3XFLAG-14126-OW58 clones with RT (lanes 2-6), p3XFlag-14 vector with RT (lane 7), and control 
reactions without RT (lane 8-13). B. GAPDH primers were used as a positive control for all reactions with 
RT. lOObp DNA ladder (lane l), p3XFLAG-14126-OW58 clones (lanes 2-6), p3XFlag-14 vector (lane 7). 



ORF27 protein visualization by means of immunofluorescence 

In order to visualize the localization of the KSHV ORF27 fusion protein an 

immunofluorescence assay was performed. After the expression of the OW27 fusion 

protein was verified by western blot analysis, phCMV-2-ORF27-C1 clone was then 

transfected into Vero cells to determine sub-cellular localization of ORF27. Vero cells 

were grown onto coverslips and transfected with phCMV2-ORF27-C1 clone. Forty eight 

hours post-transfection cells were fixed, stained with specific antibodies, counter stained, 

and mounted onto slides. The cells were observed using a confocal microscope. ORF27 

protein was observed throughout the cytoplasm of the cell (Figure 5A) and was not 

localized to the plasma membrane. This is similar to what Sander et al. (2008) observed 

for KSHV ORF27 localization. The phCMV2 control transfection showed no 

background immunofluorescence (Figure 5B). 



Figure 5. Expression of ORF27 in the Cytoplasm of Vero cells. Vero cells were grown onto coverslips 
and transfected with phCMV2-ORF27-C1. Cells were fuced in 3.7% paraformaldehyde, blocked in 1% 
BSAIPBS. Cells were stained with primary and secondary antibodies. The nuclei were counter stained 
with DAPI (blue). Coverslips were mounted and images were taken using a confocal microscope. A. HA- 
ORF27-C1 fusion protein (green), B. phCMV2 vector only control. 



Discussion 

KSHV was discovered by Chang et al. in 1994 and has since been found to be the 

cause of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's 

disease (Ablashi et al., 2002). KSHV is an enveloped gamma herpesvirus with many 

different glycoproteins (Russo et al., 1996). Enveloped viruses have a lipid layer that 

surrounds the nucleoprotein core; therefore, entry into the host cell requires either fusion 

between the cell membrane and the envelope or endocytosis of the virus into the cell 

(Greene et al., 2009; Knipe et al., 2001). Glycoproteins play a critical role in attachment, 

entry, and possibly virion egress (Chandran, 2010; Subramanian et al., 2010). 

Consequently, it is vital that all known and any possible KSHV glycoproteins are 

examined to better understand the processes of entry and egress. KSHV OW27 and 

ORF58 are possible glycoproteins but their functions are unknown (Chandran et al., 

1998; Russo et al., 1996). 

In this study we examined the localization of KSHV ORF27 and 58. It has been 

shown that the OW27 and OW58 homologues in both EBV and MHV-68 form a stable 

protein complex that co-localize at the plasma cell membrane when they were co- 

expressed (Loesing et al., 2009; May et al., 2005a). Both KSHV ORF27 and OW58 

were positively cloned into vectors for mammalian expression (Figures 2C and 2D). We 

attempted to observe the co-localization of KSHV ORF27 and ORF58 fusion proteins; 

however, we were unable to properly express the OW58 fusion protein. The OW27 

fusion protein was successfully expressed and observed within the cytoplasm of 



mammalian cells (Figure 3A and Figure 5A). Due to the lack of the ORF58 protein 

expression we were not able to examine the co-localization of KSHV ORF27 and OW58 

proteins. 

When we examined the protein sequence alignment of OW27 we noticed the 

differences in the length of the cytoplasmic tail for the ORF27 homologues (Figure 1A). 

The KSHV OW27 cytoplasmic tail was 82 amino acids shorter than EBV BDLF2 and 32 

amino acids longer than MHV-68 ORF27. No documentation has been published on the 

significance of the cytoplasmic tail length for KSHV ORF27 or EBV BDLF2. However, 

Gill et al. (2008) found that a truncated cytoplasmic tail of MHV-68 OW27 stopped the 

creation of fronds. Fronds are finger like protrusions of the cell membrane that are 

created by actin rearrangement within the cell (Gill et al., 2008). The many fronds 

increase the surface area and extend the cell membrane which may aid in viral infection 

to uninfected cells (Gill et al., 2008). MHV-68 OW27 and O m 5 8  induce actin 

rearrangement causing the creation of these fronds (Gill et al., 2008). Therefore, the 

MHV-68 OW27 cytoplasmic tail was needed for actin rearrangement (Gill et al., 2008). 

The cytoplasmic tail is thought to interact with RhoA-dependent signaling pathways 

leading to actin polymerization (Gill et al., 2008). Gill et al. (2008) also observed EBV 

BDLF2 and BMRF2 created similar fronds, but did not examine BDLF2 cytoplasmic tail 

truncation. Due to the similarity in the sequence analysis and the observations of Gill et 

al. (2008) for both MHV-68 OW27 and EBV BDLF2, I would speculate the KSHV 

OW27 cytoplasmic tail, which is shorter than BDLF2 and longer than MHV-68 ORF27, 

may also function in actin rearrangement. 



In addition to attachment/entry, the MHV-68 ORF27 protein may also protect the 

EC4 region on the OW58 protein from host antibodies (May et al., 2005a). The 

extracellular domain of the MHV-68 ORF27 protein contains many N-linked 

glycosylation sites which, when heavily glycosylated, may assist in the protection of the 

EC4 region. The EC4 domain is similar to the RGD containing domain in EBV BMRF2 

in that it can aid in binding to cells via cell surface integrins (May et al., 2005a; Xiao et 

al., 2009). The N-linked glycosylation sites were observed in the KSHV ORF27 and 

BDLF2 protein sequence alignment (Figure 1A) which suggests that the protein would 

also be glycosylated and possibly function to protect the EC4 domain in the OW58 

homologues. This protection would allow for the virus to evade the host immune system. 

In the ORF58 protein sequence alignment we observed that all ORF58 

homologues contained the 11 transmembrane domains. The RGD motif observed in the 

EC4 region of BMRF2, which is needed to bind to the basal membrane of polarized 

epithelial cells (Xiao et al., 2007). The equivalent EC4 loop in MHV-68 OW58 has 

been shown to bind to uninfected cell surfaces (May et al., 2005a), but polarized cells 

were not specifically mentioned in the article. KSHV ORF58 does not contain an RGD 

motif in the EC4 region but there was high identity and conserved amino acids observed 

in the region. Due to the similarities observed in the sequences of the OW58 

homologues we would speculate that KSHV ORF58 would also aid in binding to the 

surface of host cells enabling cell to cell spread similar to what has been observed in both 

MHV-68 and EBV (May et al., 2005a; Xiao et al., 2007). 



When KSHV ORFS8 was not observed in western blot analysis we thought there 

could be a mutation occurring the in the clone DNA. The ORF58 constructs were 

transformed into E. coli DH5a cells. During replication a novel mutation may have been 

incorporated into the clone DNA, which could disrupt its protein expression. Mutation 

frequencies differ among E. coli strains and changing the E. coli strain used in 

transformation may lead to lower mutation frequency. Therefore, we transformed the 

p3XFLAG-14-ORF58 constructs into a different strain of E. coli called JM109 in an 

attempt to create clone DNA with fewer possible mutations. Clones created in the JM109 

E. coli strain were transfected into mammalian cells, western blot analysis was performed 

and no protein bands were observed that would correspond to the ORF58 fusion protein 

(data not shown). We then looked into the placement of the tags. A C- or N-terminal 

tag may interfere with protein function and our construct was both C- and N-terminally 

tagged. We created new OW58 constructs, an N-terminal tag and a C-terminal tag. Yet 

again, we did not observe protein on western blot analysis. Gore et al. (2008) observed 

problems with ORF58 protein expression on western blot which they attributed to the 

protein being highly hydrophilic. The researchers used a urea based SDS-PAGE gel and 

were able to observe the ORF58 protein (Gore et al., 2009). We attempted to run the 

ORF58 clone protein extracts on a urea containing SDS-PAGE gel, but still did not 

observe expression of the fusion protein. 

We then investigated ORF58 mRNA production within the transfected 

mammalian cells. If no mRNA was observed this would lead us to believe there was 

something wrong with transcription of the insert. We used RT-PCR to determine if 



mRNA was produced. We found that mRNA was being transcribed for the C-terminal 

tag and the double tag constructs (Figure 4A). We speculate the problem of ORF58's 

protein expression could be due to degradation of a misfolded protein, or protein 

translation was halted for some reason. Further experiments need to be conducted to pin 

point the source of the problem. 

Sander et al. (2007) determined the localization patterns of KSHV ORF27 and 

ORF58 following transfection of HeLa cells. ORF27 was observed throughout the 

cytoplasm heterogeneously (Sander et al., 2007) similar to the localization we had 

observed for ORF27 (Figures 5A). MHV-68 OW27 and BDLF2 were found to be 

expressed within the ER when transfected without the ORF58 homologues (Gore et al., 

2009; May et al., 2005b). We observed similar a localization pattern in KSHV OW27 

which supports our theory that the protein would be found throughout the cytoplasm 

when transfected without KSHV ORF58. Sander et al. (2007) found OW58 was 

subcellularly localized in the TGN. We theorized that OW58 may be expressed if 

OW27 was also present in the cell. In attempt to visualize the ORF58 fusion protein we 

co-transfected the ORF27 and 58 clones into mammalian cells, but OW58 protein was 

still not observed (data not shown). 

In conclusion, KSHV ORF27 was successfully cloned into the phCMV-2 vector. 

The gene was properly expressed in mammalian cells and observed via western blot 

analysis and by means of immunofluorescence. KSHV ORF27, when expressed alone, 

was observed in the cytoplasm of the cell and not on the cell surface as was hypothesized. 

The localization of KSHV ORF27 within the cell and not at the cell surface may mean 



the protein was not fully processed; therefore, it could not he translocated to the cell 

surface. KSHV ORF58 was successfully cloned three times into the p3XFLAG vector, 

and was tagged at the C- and N- terminus, the C-terminus, and the N terminus. The RT- 

PCR experiment demonstrated that KSHV ORF58 mRNA was transcribed for some 

clones, but the other clones may have had mutations which did not allow for mRNA 

production. KSHV ORF58 protein was never observed on western blot analysis or 

immunofluorescence (data not shown). Future experiments would include looking at 

possible pathways of protein degradation for ORF58. If protein degradation can be 

halted then co-localization experiments can be carried out with co-transfection of KSHV 

ORF27. Finally, observing possible specific protein interactions between KSHV OW27 

and ORF58 would confirm they form a protein complex similar to that observed in EBV 

and MHV-68 (Loesing et al., 2009; May et al., 2005a). 
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